Polarization Navigation Simulation System and Skylight Compass Method Design Based upon Moment of Inertia
Unpolarized sunlight becomes polarized by atmospheric scattering and produces a skylight polarization pattern in the sky, which is detected for navigation by several species of insects. Inspired by these insects, a growing number of research studies have been conducted on how to effectively determin...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2020, Vol.2020 (2020), p.1-14 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14 |
---|---|
container_issue | 2020 |
container_start_page | 1 |
container_title | Mathematical problems in engineering |
container_volume | 2020 |
creator | Sui, Xiubao Liu, Ning Bai, Hongyang Liang, Huaju |
description | Unpolarized sunlight becomes polarized by atmospheric scattering and produces a skylight polarization pattern in the sky, which is detected for navigation by several species of insects. Inspired by these insects, a growing number of research studies have been conducted on how to effectively determine a heading angle from polarization patterns of skylight. However, few research studies have considered that the pixels of a pixelated polarization camera can be easily disturbed by noise and numerical values among adjacent pixels are discontinuous caused by crosstalk. So, this paper proposes a skylight compass method based upon the moment of inertia (MOI). Inspired by rigid body dynamics, the MOI of a rigid body with uniform mass distribution reaches the extreme values when the rigid body rotates on its symmetry axes. So, a whole polarization image is regarded as a rigid body. Then, orientation determination is transformed into solving the extreme value of MOI. This method makes full use of the polarization information of a whole polarization image and accordingly reduces the influence of the numerical discontinuity among adjacent pixels and measurement noise. In addition, this has been verified by numerical simulation and experiment. And the compass error of the MOI method is less than 0.44° for an actual polarization image. |
doi_str_mv | 10.1155/2020/4081269 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2406272004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2406272004</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-202d9cb8e65242f2034891dbd8ded8a361f21c6dc52edb78eb9a5a8e28efde733</originalsourceid><addsrcrecordid>eNqF0M1LwzAYBvAiCs7pzbMEPGpdPtv0qPNrsKkwBW8lbd5umWtTm1SZf70dHXj0lOfwe9-XPEFwSvAVIUKMKKZ4xLEkNEr2ggEREQsF4fF-lzHlIaHs_TA4cm6FMSWCyEFgXuxaNeZHeWMr9KS-zKKPc1O2613cOA8lUpVG84_N2iyWHo1tWSvn0Az80mp0C84sKnSjHGjU1t3QzJZQeWQLNKmg8UYdBweFWjs42b3D4O3-7nX8GE6fHybj62mYswj7sPuDTvJMQiQopwXFjMuE6ExLDVoqFpGCkjzSuaCgs1hCliihJFAJhYaYsWFw3u-tG_vZgvPpyrZN1Z1MKccRjSnGvFOXvcob61wDRVo3plTNJiU43ZaZbstMd2V2_KLnS1Np9W3-02e9hs5Aof40SXjCKfsFFxZ-7A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2406272004</pqid></control><display><type>article</type><title>Polarization Navigation Simulation System and Skylight Compass Method Design Based upon Moment of Inertia</title><source>Wiley Online Library Open Access</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Sui, Xiubao ; Liu, Ning ; Bai, Hongyang ; Liang, Huaju</creator><contributor>Stoican, Florin</contributor><creatorcontrib>Sui, Xiubao ; Liu, Ning ; Bai, Hongyang ; Liang, Huaju ; Stoican, Florin</creatorcontrib><description>Unpolarized sunlight becomes polarized by atmospheric scattering and produces a skylight polarization pattern in the sky, which is detected for navigation by several species of insects. Inspired by these insects, a growing number of research studies have been conducted on how to effectively determine a heading angle from polarization patterns of skylight. However, few research studies have considered that the pixels of a pixelated polarization camera can be easily disturbed by noise and numerical values among adjacent pixels are discontinuous caused by crosstalk. So, this paper proposes a skylight compass method based upon the moment of inertia (MOI). Inspired by rigid body dynamics, the MOI of a rigid body with uniform mass distribution reaches the extreme values when the rigid body rotates on its symmetry axes. So, a whole polarization image is regarded as a rigid body. Then, orientation determination is transformed into solving the extreme value of MOI. This method makes full use of the polarization information of a whole polarization image and accordingly reduces the influence of the numerical discontinuity among adjacent pixels and measurement noise. In addition, this has been verified by numerical simulation and experiment. And the compass error of the MOI method is less than 0.44° for an actual polarization image.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2020/4081269</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Atmospheric scattering ; Cameras ; Computer simulation ; Crosstalk ; Discontinuity ; Extreme values ; Inertia ; Insects ; Mass distribution ; Moments of inertia ; Navigation ; Noise measurement ; Physiology ; Pixels ; Polarization ; Rigid structures ; Rigid-body dynamics ; Simulation ; Skylights ; Symmetry</subject><ispartof>Mathematical problems in engineering, 2020, Vol.2020 (2020), p.1-14</ispartof><rights>Copyright © 2020 Huaju Liang et al.</rights><rights>Copyright © 2020 Huaju Liang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-202d9cb8e65242f2034891dbd8ded8a361f21c6dc52edb78eb9a5a8e28efde733</citedby><cites>FETCH-LOGICAL-c360t-202d9cb8e65242f2034891dbd8ded8a361f21c6dc52edb78eb9a5a8e28efde733</cites><orcidid>0000-0002-9978-8250 ; 0000-0002-6552-8207 ; 0000-0002-4576-2565</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><contributor>Stoican, Florin</contributor><creatorcontrib>Sui, Xiubao</creatorcontrib><creatorcontrib>Liu, Ning</creatorcontrib><creatorcontrib>Bai, Hongyang</creatorcontrib><creatorcontrib>Liang, Huaju</creatorcontrib><title>Polarization Navigation Simulation System and Skylight Compass Method Design Based upon Moment of Inertia</title><title>Mathematical problems in engineering</title><description>Unpolarized sunlight becomes polarized by atmospheric scattering and produces a skylight polarization pattern in the sky, which is detected for navigation by several species of insects. Inspired by these insects, a growing number of research studies have been conducted on how to effectively determine a heading angle from polarization patterns of skylight. However, few research studies have considered that the pixels of a pixelated polarization camera can be easily disturbed by noise and numerical values among adjacent pixels are discontinuous caused by crosstalk. So, this paper proposes a skylight compass method based upon the moment of inertia (MOI). Inspired by rigid body dynamics, the MOI of a rigid body with uniform mass distribution reaches the extreme values when the rigid body rotates on its symmetry axes. So, a whole polarization image is regarded as a rigid body. Then, orientation determination is transformed into solving the extreme value of MOI. This method makes full use of the polarization information of a whole polarization image and accordingly reduces the influence of the numerical discontinuity among adjacent pixels and measurement noise. In addition, this has been verified by numerical simulation and experiment. And the compass error of the MOI method is less than 0.44° for an actual polarization image.</description><subject>Algorithms</subject><subject>Atmospheric scattering</subject><subject>Cameras</subject><subject>Computer simulation</subject><subject>Crosstalk</subject><subject>Discontinuity</subject><subject>Extreme values</subject><subject>Inertia</subject><subject>Insects</subject><subject>Mass distribution</subject><subject>Moments of inertia</subject><subject>Navigation</subject><subject>Noise measurement</subject><subject>Physiology</subject><subject>Pixels</subject><subject>Polarization</subject><subject>Rigid structures</subject><subject>Rigid-body dynamics</subject><subject>Simulation</subject><subject>Skylights</subject><subject>Symmetry</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNqF0M1LwzAYBvAiCs7pzbMEPGpdPtv0qPNrsKkwBW8lbd5umWtTm1SZf70dHXj0lOfwe9-XPEFwSvAVIUKMKKZ4xLEkNEr2ggEREQsF4fF-lzHlIaHs_TA4cm6FMSWCyEFgXuxaNeZHeWMr9KS-zKKPc1O2613cOA8lUpVG84_N2iyWHo1tWSvn0Az80mp0C84sKnSjHGjU1t3QzJZQeWQLNKmg8UYdBweFWjs42b3D4O3-7nX8GE6fHybj62mYswj7sPuDTvJMQiQopwXFjMuE6ExLDVoqFpGCkjzSuaCgs1hCliihJFAJhYaYsWFw3u-tG_vZgvPpyrZN1Z1MKccRjSnGvFOXvcob61wDRVo3plTNJiU43ZaZbstMd2V2_KLnS1Np9W3-02e9hs5Aof40SXjCKfsFFxZ-7A</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Sui, Xiubao</creator><creator>Liu, Ning</creator><creator>Bai, Hongyang</creator><creator>Liang, Huaju</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-9978-8250</orcidid><orcidid>https://orcid.org/0000-0002-6552-8207</orcidid><orcidid>https://orcid.org/0000-0002-4576-2565</orcidid></search><sort><creationdate>2020</creationdate><title>Polarization Navigation Simulation System and Skylight Compass Method Design Based upon Moment of Inertia</title><author>Sui, Xiubao ; Liu, Ning ; Bai, Hongyang ; Liang, Huaju</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-202d9cb8e65242f2034891dbd8ded8a361f21c6dc52edb78eb9a5a8e28efde733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Atmospheric scattering</topic><topic>Cameras</topic><topic>Computer simulation</topic><topic>Crosstalk</topic><topic>Discontinuity</topic><topic>Extreme values</topic><topic>Inertia</topic><topic>Insects</topic><topic>Mass distribution</topic><topic>Moments of inertia</topic><topic>Navigation</topic><topic>Noise measurement</topic><topic>Physiology</topic><topic>Pixels</topic><topic>Polarization</topic><topic>Rigid structures</topic><topic>Rigid-body dynamics</topic><topic>Simulation</topic><topic>Skylights</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sui, Xiubao</creatorcontrib><creatorcontrib>Liu, Ning</creatorcontrib><creatorcontrib>Bai, Hongyang</creatorcontrib><creatorcontrib>Liang, Huaju</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sui, Xiubao</au><au>Liu, Ning</au><au>Bai, Hongyang</au><au>Liang, Huaju</au><au>Stoican, Florin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polarization Navigation Simulation System and Skylight Compass Method Design Based upon Moment of Inertia</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>Unpolarized sunlight becomes polarized by atmospheric scattering and produces a skylight polarization pattern in the sky, which is detected for navigation by several species of insects. Inspired by these insects, a growing number of research studies have been conducted on how to effectively determine a heading angle from polarization patterns of skylight. However, few research studies have considered that the pixels of a pixelated polarization camera can be easily disturbed by noise and numerical values among adjacent pixels are discontinuous caused by crosstalk. So, this paper proposes a skylight compass method based upon the moment of inertia (MOI). Inspired by rigid body dynamics, the MOI of a rigid body with uniform mass distribution reaches the extreme values when the rigid body rotates on its symmetry axes. So, a whole polarization image is regarded as a rigid body. Then, orientation determination is transformed into solving the extreme value of MOI. This method makes full use of the polarization information of a whole polarization image and accordingly reduces the influence of the numerical discontinuity among adjacent pixels and measurement noise. In addition, this has been verified by numerical simulation and experiment. And the compass error of the MOI method is less than 0.44° for an actual polarization image.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/4081269</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9978-8250</orcidid><orcidid>https://orcid.org/0000-0002-6552-8207</orcidid><orcidid>https://orcid.org/0000-0002-4576-2565</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical problems in engineering, 2020, Vol.2020 (2020), p.1-14 |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_proquest_journals_2406272004 |
source | Wiley Online Library Open Access; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Algorithms Atmospheric scattering Cameras Computer simulation Crosstalk Discontinuity Extreme values Inertia Insects Mass distribution Moments of inertia Navigation Noise measurement Physiology Pixels Polarization Rigid structures Rigid-body dynamics Simulation Skylights Symmetry |
title | Polarization Navigation Simulation System and Skylight Compass Method Design Based upon Moment of Inertia |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T16%3A05%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polarization%20Navigation%20Simulation%20System%20and%20Skylight%20Compass%20Method%20Design%20Based%20upon%20Moment%20of%20Inertia&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Sui,%20Xiubao&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2020/4081269&rft_dat=%3Cproquest_cross%3E2406272004%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2406272004&rft_id=info:pmid/&rfr_iscdi=true |