A Phototheranostic Strategy to Continuously Deliver Singlet Oxygen in the Dark and Hypoxic Tumor Microenvironment

Continuous irradiation during photodynamic therapy (PDT) inevitably induces tumor hypoxia, thereby weakening the PDT effect. In PDT‐induced hypoxia, providing singlet oxygen from stored chemical energy may enhance the cell‐killing effect and boost the therapeutic effect. Herein, we present a phototh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2020-06, Vol.59 (23), p.8833-8838
Hauptverfasser: Zou, Jianhua, Zhu, Jianwei, Yang, Zhen, Li, Ling, Fan, Wenpei, He, Liangcan, Tang, Wei, Deng, Liming, Mu, Jing, Ma, Yuanyuan, Cheng, Yaya, Huang, Wei, Dong, Xiaochen, Chen, Xiaoyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8838
container_issue 23
container_start_page 8833
container_title Angewandte Chemie International Edition
container_volume 59
creator Zou, Jianhua
Zhu, Jianwei
Yang, Zhen
Li, Ling
Fan, Wenpei
He, Liangcan
Tang, Wei
Deng, Liming
Mu, Jing
Ma, Yuanyuan
Cheng, Yaya
Huang, Wei
Dong, Xiaochen
Chen, Xiaoyuan
description Continuous irradiation during photodynamic therapy (PDT) inevitably induces tumor hypoxia, thereby weakening the PDT effect. In PDT‐induced hypoxia, providing singlet oxygen from stored chemical energy may enhance the cell‐killing effect and boost the therapeutic effect. Herein, we present a phototheranostic (DPPTPE@PEG‐Py NPs) prepared by using a 2‐pyridone‐based diblock polymer (PEG‐Py) to encapsulate a semiconducting, heavy‐atom‐free pyrrolopyrrolidone‐tetraphenylethylene (DPPTPE) with high singlet‐oxygen‐generation ability both in dichloromethane and water. The PEG‐Py can trap the 1O2 generated from DPPTPE under laser irradiation and form a stable intermediate of endoperoxide, which can then release 1O2 in the dark, hypoxic tumor microenvironment. Furthermore, fluorescence‐imaging‐guided phototherapy demonstrates that this phototheranostic could completely inhibit tumor growth with the help of laser irradiation. Continuous photodynamic therapy: A 2‐pyridone‐based diblock polymer (PEG‐Py) was used to encapsulate the semiconducting, heavy‐atom‐free, photosensitizer pyrrolopyrrolidone‐tetraphenylethylene (DPPTPE). PEG‐Py can trap the 1O2 generated from DPPTPE under laser irradiation and then release 1O2 in the dark, hypoxic tumor microenvironment. As this nanoparticle can also be used for fluorescence‐guided imaging, it could be used as a phototheranostic agent.
doi_str_mv 10.1002/anie.201914384
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2406271397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2406271397</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4504-5f9b9891f47f7aa6d8869113581cd1226b1123a5bb157860eaa5b05eae5c35e3</originalsourceid><addsrcrecordid>eNqNkEFP3DAQha2qqFDaa4-VpR6rbD1xHDvHVaAFiQISe4-c7GQxzdqL7VDy7-vVLtsjzGXm8L03M4-QL8BmwFj-Q1uDs5xBBQVXxTtyAiKHjEvJ36e54DyTSsAx-RjCQ-KVYuUHcsyhKnjJ8hPyOKe39y66eI9eWxei6ehd9DriaqLR0drZaOzoxjBM9AwH84Se3hm7GjDSm-dphZYaS5Ocnmn_h2q7pBfTxj0nn8W4dp7-Np13aJ-Md3aNNn4iR70eAn7e91Oy-Hm-qC-yq5tfl_X8KusKwYpM9FVbqQr6QvZS63KpVFkBcKGgW0Kely1AzrVoWxBSlQx1mplAjaLjAvkp-baz3Xj3OGKIzYMbvU0bm7xgZS6BVzJRsx2VbgzBY99svFlrPzXAmm3AzTbg5hBwEnzd247tGpcH_CXRBHzfAX-xdX3oDNoODxhjTACTVcm2BYlWb6drE3U0ztZutDFJq73UDDi9cnczv748___FP9f6qRA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2406271397</pqid></control><display><type>article</type><title>A Phototheranostic Strategy to Continuously Deliver Singlet Oxygen in the Dark and Hypoxic Tumor Microenvironment</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Zou, Jianhua ; Zhu, Jianwei ; Yang, Zhen ; Li, Ling ; Fan, Wenpei ; He, Liangcan ; Tang, Wei ; Deng, Liming ; Mu, Jing ; Ma, Yuanyuan ; Cheng, Yaya ; Huang, Wei ; Dong, Xiaochen ; Chen, Xiaoyuan</creator><creatorcontrib>Zou, Jianhua ; Zhu, Jianwei ; Yang, Zhen ; Li, Ling ; Fan, Wenpei ; He, Liangcan ; Tang, Wei ; Deng, Liming ; Mu, Jing ; Ma, Yuanyuan ; Cheng, Yaya ; Huang, Wei ; Dong, Xiaochen ; Chen, Xiaoyuan</creatorcontrib><description>Continuous irradiation during photodynamic therapy (PDT) inevitably induces tumor hypoxia, thereby weakening the PDT effect. In PDT‐induced hypoxia, providing singlet oxygen from stored chemical energy may enhance the cell‐killing effect and boost the therapeutic effect. Herein, we present a phototheranostic (DPPTPE@PEG‐Py NPs) prepared by using a 2‐pyridone‐based diblock polymer (PEG‐Py) to encapsulate a semiconducting, heavy‐atom‐free pyrrolopyrrolidone‐tetraphenylethylene (DPPTPE) with high singlet‐oxygen‐generation ability both in dichloromethane and water. The PEG‐Py can trap the 1O2 generated from DPPTPE under laser irradiation and form a stable intermediate of endoperoxide, which can then release 1O2 in the dark, hypoxic tumor microenvironment. Furthermore, fluorescence‐imaging‐guided phototherapy demonstrates that this phototheranostic could completely inhibit tumor growth with the help of laser irradiation. Continuous photodynamic therapy: A 2‐pyridone‐based diblock polymer (PEG‐Py) was used to encapsulate the semiconducting, heavy‐atom‐free, photosensitizer pyrrolopyrrolidone‐tetraphenylethylene (DPPTPE). PEG‐Py can trap the 1O2 generated from DPPTPE under laser irradiation and then release 1O2 in the dark, hypoxic tumor microenvironment. As this nanoparticle can also be used for fluorescence‐guided imaging, it could be used as a phototheranostic agent.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201914384</identifier><identifier>PMID: 31943602</identifier><language>eng</language><publisher>WEINHEIM: Wiley</publisher><subject>Cell Line, Tumor ; Cell Proliferation - radiation effects ; Chemical energy ; Chemistry ; Chemistry, Multidisciplinary ; Darkness ; Dichloromethane ; Fluorescence ; Humans ; Hypoxia ; imaging agents ; Irradiation ; Lasers ; nanoparticles ; Optical Imaging ; Oxygen ; Photodynamic therapy ; Phototherapy ; Phototherapy - methods ; photothermal therapy ; Physical Sciences ; Polyethylene glycol ; Polyethylene Glycols - chemistry ; Polymers ; Pyrrolidinones - chemistry ; Science &amp; Technology ; Singlet oxygen ; Singlet Oxygen - chemistry ; Singlet Oxygen - metabolism ; Stilbenes - chemistry ; theranostics ; Tumor Hypoxia - radiation effects ; Tumor Microenvironment - radiation effects ; Tumors</subject><ispartof>Angewandte Chemie International Edition, 2020-06, Vol.59 (23), p.8833-8838</ispartof><rights>2020 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>156</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000510796000001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c4504-5f9b9891f47f7aa6d8869113581cd1226b1123a5bb157860eaa5b05eae5c35e3</citedby><cites>FETCH-LOGICAL-c4504-5f9b9891f47f7aa6d8869113581cd1226b1123a5bb157860eaa5b05eae5c35e3</cites><orcidid>0000-0002-9622-0870 ; 0000-0003-0718-9128 ; 0000-0001-7004-6408</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.201914384$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.201914384$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27928,27929,45578,45579</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31943602$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zou, Jianhua</creatorcontrib><creatorcontrib>Zhu, Jianwei</creatorcontrib><creatorcontrib>Yang, Zhen</creatorcontrib><creatorcontrib>Li, Ling</creatorcontrib><creatorcontrib>Fan, Wenpei</creatorcontrib><creatorcontrib>He, Liangcan</creatorcontrib><creatorcontrib>Tang, Wei</creatorcontrib><creatorcontrib>Deng, Liming</creatorcontrib><creatorcontrib>Mu, Jing</creatorcontrib><creatorcontrib>Ma, Yuanyuan</creatorcontrib><creatorcontrib>Cheng, Yaya</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Dong, Xiaochen</creatorcontrib><creatorcontrib>Chen, Xiaoyuan</creatorcontrib><title>A Phototheranostic Strategy to Continuously Deliver Singlet Oxygen in the Dark and Hypoxic Tumor Microenvironment</title><title>Angewandte Chemie International Edition</title><addtitle>ANGEW CHEM INT EDIT</addtitle><addtitle>Angew Chem Int Ed Engl</addtitle><description>Continuous irradiation during photodynamic therapy (PDT) inevitably induces tumor hypoxia, thereby weakening the PDT effect. In PDT‐induced hypoxia, providing singlet oxygen from stored chemical energy may enhance the cell‐killing effect and boost the therapeutic effect. Herein, we present a phototheranostic (DPPTPE@PEG‐Py NPs) prepared by using a 2‐pyridone‐based diblock polymer (PEG‐Py) to encapsulate a semiconducting, heavy‐atom‐free pyrrolopyrrolidone‐tetraphenylethylene (DPPTPE) with high singlet‐oxygen‐generation ability both in dichloromethane and water. The PEG‐Py can trap the 1O2 generated from DPPTPE under laser irradiation and form a stable intermediate of endoperoxide, which can then release 1O2 in the dark, hypoxic tumor microenvironment. Furthermore, fluorescence‐imaging‐guided phototherapy demonstrates that this phototheranostic could completely inhibit tumor growth with the help of laser irradiation. Continuous photodynamic therapy: A 2‐pyridone‐based diblock polymer (PEG‐Py) was used to encapsulate the semiconducting, heavy‐atom‐free, photosensitizer pyrrolopyrrolidone‐tetraphenylethylene (DPPTPE). PEG‐Py can trap the 1O2 generated from DPPTPE under laser irradiation and then release 1O2 in the dark, hypoxic tumor microenvironment. As this nanoparticle can also be used for fluorescence‐guided imaging, it could be used as a phototheranostic agent.</description><subject>Cell Line, Tumor</subject><subject>Cell Proliferation - radiation effects</subject><subject>Chemical energy</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Darkness</subject><subject>Dichloromethane</subject><subject>Fluorescence</subject><subject>Humans</subject><subject>Hypoxia</subject><subject>imaging agents</subject><subject>Irradiation</subject><subject>Lasers</subject><subject>nanoparticles</subject><subject>Optical Imaging</subject><subject>Oxygen</subject><subject>Photodynamic therapy</subject><subject>Phototherapy</subject><subject>Phototherapy - methods</subject><subject>photothermal therapy</subject><subject>Physical Sciences</subject><subject>Polyethylene glycol</subject><subject>Polyethylene Glycols - chemistry</subject><subject>Polymers</subject><subject>Pyrrolidinones - chemistry</subject><subject>Science &amp; Technology</subject><subject>Singlet oxygen</subject><subject>Singlet Oxygen - chemistry</subject><subject>Singlet Oxygen - metabolism</subject><subject>Stilbenes - chemistry</subject><subject>theranostics</subject><subject>Tumor Hypoxia - radiation effects</subject><subject>Tumor Microenvironment - radiation effects</subject><subject>Tumors</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><recordid>eNqNkEFP3DAQha2qqFDaa4-VpR6rbD1xHDvHVaAFiQISe4-c7GQxzdqL7VDy7-vVLtsjzGXm8L03M4-QL8BmwFj-Q1uDs5xBBQVXxTtyAiKHjEvJ36e54DyTSsAx-RjCQ-KVYuUHcsyhKnjJ8hPyOKe39y66eI9eWxei6ehd9DriaqLR0drZaOzoxjBM9AwH84Se3hm7GjDSm-dphZYaS5Ocnmn_h2q7pBfTxj0nn8W4dp7-Np13aJ-Md3aNNn4iR70eAn7e91Oy-Hm-qC-yq5tfl_X8KusKwYpM9FVbqQr6QvZS63KpVFkBcKGgW0Kely1AzrVoWxBSlQx1mplAjaLjAvkp-baz3Xj3OGKIzYMbvU0bm7xgZS6BVzJRsx2VbgzBY99svFlrPzXAmm3AzTbg5hBwEnzd247tGpcH_CXRBHzfAX-xdX3oDNoODxhjTACTVcm2BYlWb6drE3U0ztZutDFJq73UDDi9cnczv748___FP9f6qRA</recordid><startdate>20200602</startdate><enddate>20200602</enddate><creator>Zou, Jianhua</creator><creator>Zhu, Jianwei</creator><creator>Yang, Zhen</creator><creator>Li, Ling</creator><creator>Fan, Wenpei</creator><creator>He, Liangcan</creator><creator>Tang, Wei</creator><creator>Deng, Liming</creator><creator>Mu, Jing</creator><creator>Ma, Yuanyuan</creator><creator>Cheng, Yaya</creator><creator>Huang, Wei</creator><creator>Dong, Xiaochen</creator><creator>Chen, Xiaoyuan</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>1KM</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><orcidid>https://orcid.org/0000-0002-9622-0870</orcidid><orcidid>https://orcid.org/0000-0003-0718-9128</orcidid><orcidid>https://orcid.org/0000-0001-7004-6408</orcidid></search><sort><creationdate>20200602</creationdate><title>A Phototheranostic Strategy to Continuously Deliver Singlet Oxygen in the Dark and Hypoxic Tumor Microenvironment</title><author>Zou, Jianhua ; Zhu, Jianwei ; Yang, Zhen ; Li, Ling ; Fan, Wenpei ; He, Liangcan ; Tang, Wei ; Deng, Liming ; Mu, Jing ; Ma, Yuanyuan ; Cheng, Yaya ; Huang, Wei ; Dong, Xiaochen ; Chen, Xiaoyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4504-5f9b9891f47f7aa6d8869113581cd1226b1123a5bb157860eaa5b05eae5c35e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cell Line, Tumor</topic><topic>Cell Proliferation - radiation effects</topic><topic>Chemical energy</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Darkness</topic><topic>Dichloromethane</topic><topic>Fluorescence</topic><topic>Humans</topic><topic>Hypoxia</topic><topic>imaging agents</topic><topic>Irradiation</topic><topic>Lasers</topic><topic>nanoparticles</topic><topic>Optical Imaging</topic><topic>Oxygen</topic><topic>Photodynamic therapy</topic><topic>Phototherapy</topic><topic>Phototherapy - methods</topic><topic>photothermal therapy</topic><topic>Physical Sciences</topic><topic>Polyethylene glycol</topic><topic>Polyethylene Glycols - chemistry</topic><topic>Polymers</topic><topic>Pyrrolidinones - chemistry</topic><topic>Science &amp; Technology</topic><topic>Singlet oxygen</topic><topic>Singlet Oxygen - chemistry</topic><topic>Singlet Oxygen - metabolism</topic><topic>Stilbenes - chemistry</topic><topic>theranostics</topic><topic>Tumor Hypoxia - radiation effects</topic><topic>Tumor Microenvironment - radiation effects</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zou, Jianhua</creatorcontrib><creatorcontrib>Zhu, Jianwei</creatorcontrib><creatorcontrib>Yang, Zhen</creatorcontrib><creatorcontrib>Li, Ling</creatorcontrib><creatorcontrib>Fan, Wenpei</creatorcontrib><creatorcontrib>He, Liangcan</creatorcontrib><creatorcontrib>Tang, Wei</creatorcontrib><creatorcontrib>Deng, Liming</creatorcontrib><creatorcontrib>Mu, Jing</creatorcontrib><creatorcontrib>Ma, Yuanyuan</creatorcontrib><creatorcontrib>Cheng, Yaya</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Dong, Xiaochen</creatorcontrib><creatorcontrib>Chen, Xiaoyuan</creatorcontrib><collection>Index Chemicus</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zou, Jianhua</au><au>Zhu, Jianwei</au><au>Yang, Zhen</au><au>Li, Ling</au><au>Fan, Wenpei</au><au>He, Liangcan</au><au>Tang, Wei</au><au>Deng, Liming</au><au>Mu, Jing</au><au>Ma, Yuanyuan</au><au>Cheng, Yaya</au><au>Huang, Wei</au><au>Dong, Xiaochen</au><au>Chen, Xiaoyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Phototheranostic Strategy to Continuously Deliver Singlet Oxygen in the Dark and Hypoxic Tumor Microenvironment</atitle><jtitle>Angewandte Chemie International Edition</jtitle><stitle>ANGEW CHEM INT EDIT</stitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2020-06-02</date><risdate>2020</risdate><volume>59</volume><issue>23</issue><spage>8833</spage><epage>8838</epage><pages>8833-8838</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Continuous irradiation during photodynamic therapy (PDT) inevitably induces tumor hypoxia, thereby weakening the PDT effect. In PDT‐induced hypoxia, providing singlet oxygen from stored chemical energy may enhance the cell‐killing effect and boost the therapeutic effect. Herein, we present a phototheranostic (DPPTPE@PEG‐Py NPs) prepared by using a 2‐pyridone‐based diblock polymer (PEG‐Py) to encapsulate a semiconducting, heavy‐atom‐free pyrrolopyrrolidone‐tetraphenylethylene (DPPTPE) with high singlet‐oxygen‐generation ability both in dichloromethane and water. The PEG‐Py can trap the 1O2 generated from DPPTPE under laser irradiation and form a stable intermediate of endoperoxide, which can then release 1O2 in the dark, hypoxic tumor microenvironment. Furthermore, fluorescence‐imaging‐guided phototherapy demonstrates that this phototheranostic could completely inhibit tumor growth with the help of laser irradiation. Continuous photodynamic therapy: A 2‐pyridone‐based diblock polymer (PEG‐Py) was used to encapsulate the semiconducting, heavy‐atom‐free, photosensitizer pyrrolopyrrolidone‐tetraphenylethylene (DPPTPE). PEG‐Py can trap the 1O2 generated from DPPTPE under laser irradiation and then release 1O2 in the dark, hypoxic tumor microenvironment. As this nanoparticle can also be used for fluorescence‐guided imaging, it could be used as a phototheranostic agent.</abstract><cop>WEINHEIM</cop><pub>Wiley</pub><pmid>31943602</pmid><doi>10.1002/anie.201914384</doi><tpages>6</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-9622-0870</orcidid><orcidid>https://orcid.org/0000-0003-0718-9128</orcidid><orcidid>https://orcid.org/0000-0001-7004-6408</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2020-06, Vol.59 (23), p.8833-8838
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_journals_2406271397
source MEDLINE; Access via Wiley Online Library
subjects Cell Line, Tumor
Cell Proliferation - radiation effects
Chemical energy
Chemistry
Chemistry, Multidisciplinary
Darkness
Dichloromethane
Fluorescence
Humans
Hypoxia
imaging agents
Irradiation
Lasers
nanoparticles
Optical Imaging
Oxygen
Photodynamic therapy
Phototherapy
Phototherapy - methods
photothermal therapy
Physical Sciences
Polyethylene glycol
Polyethylene Glycols - chemistry
Polymers
Pyrrolidinones - chemistry
Science & Technology
Singlet oxygen
Singlet Oxygen - chemistry
Singlet Oxygen - metabolism
Stilbenes - chemistry
theranostics
Tumor Hypoxia - radiation effects
Tumor Microenvironment - radiation effects
Tumors
title A Phototheranostic Strategy to Continuously Deliver Singlet Oxygen in the Dark and Hypoxic Tumor Microenvironment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T08%3A08%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Phototheranostic%20Strategy%20to%20Continuously%20Deliver%20Singlet%20Oxygen%20in%20the%20Dark%20and%20Hypoxic%20Tumor%20Microenvironment&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Zou,%20Jianhua&rft.date=2020-06-02&rft.volume=59&rft.issue=23&rft.spage=8833&rft.epage=8838&rft.pages=8833-8838&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.201914384&rft_dat=%3Cproquest_cross%3E2406271397%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2406271397&rft_id=info:pmid/31943602&rfr_iscdi=true