A Phototheranostic Strategy to Continuously Deliver Singlet Oxygen in the Dark and Hypoxic Tumor Microenvironment
Continuous irradiation during photodynamic therapy (PDT) inevitably induces tumor hypoxia, thereby weakening the PDT effect. In PDT‐induced hypoxia, providing singlet oxygen from stored chemical energy may enhance the cell‐killing effect and boost the therapeutic effect. Herein, we present a phototh...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2020-06, Vol.59 (23), p.8833-8838 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8838 |
---|---|
container_issue | 23 |
container_start_page | 8833 |
container_title | Angewandte Chemie International Edition |
container_volume | 59 |
creator | Zou, Jianhua Zhu, Jianwei Yang, Zhen Li, Ling Fan, Wenpei He, Liangcan Tang, Wei Deng, Liming Mu, Jing Ma, Yuanyuan Cheng, Yaya Huang, Wei Dong, Xiaochen Chen, Xiaoyuan |
description | Continuous irradiation during photodynamic therapy (PDT) inevitably induces tumor hypoxia, thereby weakening the PDT effect. In PDT‐induced hypoxia, providing singlet oxygen from stored chemical energy may enhance the cell‐killing effect and boost the therapeutic effect. Herein, we present a phototheranostic (DPPTPE@PEG‐Py NPs) prepared by using a 2‐pyridone‐based diblock polymer (PEG‐Py) to encapsulate a semiconducting, heavy‐atom‐free pyrrolopyrrolidone‐tetraphenylethylene (DPPTPE) with high singlet‐oxygen‐generation ability both in dichloromethane and water. The PEG‐Py can trap the 1O2 generated from DPPTPE under laser irradiation and form a stable intermediate of endoperoxide, which can then release 1O2 in the dark, hypoxic tumor microenvironment. Furthermore, fluorescence‐imaging‐guided phototherapy demonstrates that this phototheranostic could completely inhibit tumor growth with the help of laser irradiation.
Continuous photodynamic therapy: A 2‐pyridone‐based diblock polymer (PEG‐Py) was used to encapsulate the semiconducting, heavy‐atom‐free, photosensitizer pyrrolopyrrolidone‐tetraphenylethylene (DPPTPE). PEG‐Py can trap the 1O2 generated from DPPTPE under laser irradiation and then release 1O2 in the dark, hypoxic tumor microenvironment. As this nanoparticle can also be used for fluorescence‐guided imaging, it could be used as a phototheranostic agent. |
doi_str_mv | 10.1002/anie.201914384 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2406271397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2406271397</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4504-5f9b9891f47f7aa6d8869113581cd1226b1123a5bb157860eaa5b05eae5c35e3</originalsourceid><addsrcrecordid>eNqNkEFP3DAQha2qqFDaa4-VpR6rbD1xHDvHVaAFiQISe4-c7GQxzdqL7VDy7-vVLtsjzGXm8L03M4-QL8BmwFj-Q1uDs5xBBQVXxTtyAiKHjEvJ36e54DyTSsAx-RjCQ-KVYuUHcsyhKnjJ8hPyOKe39y66eI9eWxei6ehd9DriaqLR0drZaOzoxjBM9AwH84Se3hm7GjDSm-dphZYaS5Ocnmn_h2q7pBfTxj0nn8W4dp7-Np13aJ-Md3aNNn4iR70eAn7e91Oy-Hm-qC-yq5tfl_X8KusKwYpM9FVbqQr6QvZS63KpVFkBcKGgW0Kely1AzrVoWxBSlQx1mplAjaLjAvkp-baz3Xj3OGKIzYMbvU0bm7xgZS6BVzJRsx2VbgzBY99svFlrPzXAmm3AzTbg5hBwEnzd247tGpcH_CXRBHzfAX-xdX3oDNoODxhjTACTVcm2BYlWb6drE3U0ztZutDFJq73UDDi9cnczv748___FP9f6qRA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2406271397</pqid></control><display><type>article</type><title>A Phototheranostic Strategy to Continuously Deliver Singlet Oxygen in the Dark and Hypoxic Tumor Microenvironment</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Zou, Jianhua ; Zhu, Jianwei ; Yang, Zhen ; Li, Ling ; Fan, Wenpei ; He, Liangcan ; Tang, Wei ; Deng, Liming ; Mu, Jing ; Ma, Yuanyuan ; Cheng, Yaya ; Huang, Wei ; Dong, Xiaochen ; Chen, Xiaoyuan</creator><creatorcontrib>Zou, Jianhua ; Zhu, Jianwei ; Yang, Zhen ; Li, Ling ; Fan, Wenpei ; He, Liangcan ; Tang, Wei ; Deng, Liming ; Mu, Jing ; Ma, Yuanyuan ; Cheng, Yaya ; Huang, Wei ; Dong, Xiaochen ; Chen, Xiaoyuan</creatorcontrib><description>Continuous irradiation during photodynamic therapy (PDT) inevitably induces tumor hypoxia, thereby weakening the PDT effect. In PDT‐induced hypoxia, providing singlet oxygen from stored chemical energy may enhance the cell‐killing effect and boost the therapeutic effect. Herein, we present a phototheranostic (DPPTPE@PEG‐Py NPs) prepared by using a 2‐pyridone‐based diblock polymer (PEG‐Py) to encapsulate a semiconducting, heavy‐atom‐free pyrrolopyrrolidone‐tetraphenylethylene (DPPTPE) with high singlet‐oxygen‐generation ability both in dichloromethane and water. The PEG‐Py can trap the 1O2 generated from DPPTPE under laser irradiation and form a stable intermediate of endoperoxide, which can then release 1O2 in the dark, hypoxic tumor microenvironment. Furthermore, fluorescence‐imaging‐guided phototherapy demonstrates that this phototheranostic could completely inhibit tumor growth with the help of laser irradiation.
Continuous photodynamic therapy: A 2‐pyridone‐based diblock polymer (PEG‐Py) was used to encapsulate the semiconducting, heavy‐atom‐free, photosensitizer pyrrolopyrrolidone‐tetraphenylethylene (DPPTPE). PEG‐Py can trap the 1O2 generated from DPPTPE under laser irradiation and then release 1O2 in the dark, hypoxic tumor microenvironment. As this nanoparticle can also be used for fluorescence‐guided imaging, it could be used as a phototheranostic agent.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201914384</identifier><identifier>PMID: 31943602</identifier><language>eng</language><publisher>WEINHEIM: Wiley</publisher><subject>Cell Line, Tumor ; Cell Proliferation - radiation effects ; Chemical energy ; Chemistry ; Chemistry, Multidisciplinary ; Darkness ; Dichloromethane ; Fluorescence ; Humans ; Hypoxia ; imaging agents ; Irradiation ; Lasers ; nanoparticles ; Optical Imaging ; Oxygen ; Photodynamic therapy ; Phototherapy ; Phototherapy - methods ; photothermal therapy ; Physical Sciences ; Polyethylene glycol ; Polyethylene Glycols - chemistry ; Polymers ; Pyrrolidinones - chemistry ; Science & Technology ; Singlet oxygen ; Singlet Oxygen - chemistry ; Singlet Oxygen - metabolism ; Stilbenes - chemistry ; theranostics ; Tumor Hypoxia - radiation effects ; Tumor Microenvironment - radiation effects ; Tumors</subject><ispartof>Angewandte Chemie International Edition, 2020-06, Vol.59 (23), p.8833-8838</ispartof><rights>2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>156</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000510796000001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c4504-5f9b9891f47f7aa6d8869113581cd1226b1123a5bb157860eaa5b05eae5c35e3</citedby><cites>FETCH-LOGICAL-c4504-5f9b9891f47f7aa6d8869113581cd1226b1123a5bb157860eaa5b05eae5c35e3</cites><orcidid>0000-0002-9622-0870 ; 0000-0003-0718-9128 ; 0000-0001-7004-6408</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.201914384$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.201914384$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27928,27929,45578,45579</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31943602$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zou, Jianhua</creatorcontrib><creatorcontrib>Zhu, Jianwei</creatorcontrib><creatorcontrib>Yang, Zhen</creatorcontrib><creatorcontrib>Li, Ling</creatorcontrib><creatorcontrib>Fan, Wenpei</creatorcontrib><creatorcontrib>He, Liangcan</creatorcontrib><creatorcontrib>Tang, Wei</creatorcontrib><creatorcontrib>Deng, Liming</creatorcontrib><creatorcontrib>Mu, Jing</creatorcontrib><creatorcontrib>Ma, Yuanyuan</creatorcontrib><creatorcontrib>Cheng, Yaya</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Dong, Xiaochen</creatorcontrib><creatorcontrib>Chen, Xiaoyuan</creatorcontrib><title>A Phototheranostic Strategy to Continuously Deliver Singlet Oxygen in the Dark and Hypoxic Tumor Microenvironment</title><title>Angewandte Chemie International Edition</title><addtitle>ANGEW CHEM INT EDIT</addtitle><addtitle>Angew Chem Int Ed Engl</addtitle><description>Continuous irradiation during photodynamic therapy (PDT) inevitably induces tumor hypoxia, thereby weakening the PDT effect. In PDT‐induced hypoxia, providing singlet oxygen from stored chemical energy may enhance the cell‐killing effect and boost the therapeutic effect. Herein, we present a phototheranostic (DPPTPE@PEG‐Py NPs) prepared by using a 2‐pyridone‐based diblock polymer (PEG‐Py) to encapsulate a semiconducting, heavy‐atom‐free pyrrolopyrrolidone‐tetraphenylethylene (DPPTPE) with high singlet‐oxygen‐generation ability both in dichloromethane and water. The PEG‐Py can trap the 1O2 generated from DPPTPE under laser irradiation and form a stable intermediate of endoperoxide, which can then release 1O2 in the dark, hypoxic tumor microenvironment. Furthermore, fluorescence‐imaging‐guided phototherapy demonstrates that this phototheranostic could completely inhibit tumor growth with the help of laser irradiation.
Continuous photodynamic therapy: A 2‐pyridone‐based diblock polymer (PEG‐Py) was used to encapsulate the semiconducting, heavy‐atom‐free, photosensitizer pyrrolopyrrolidone‐tetraphenylethylene (DPPTPE). PEG‐Py can trap the 1O2 generated from DPPTPE under laser irradiation and then release 1O2 in the dark, hypoxic tumor microenvironment. As this nanoparticle can also be used for fluorescence‐guided imaging, it could be used as a phototheranostic agent.</description><subject>Cell Line, Tumor</subject><subject>Cell Proliferation - radiation effects</subject><subject>Chemical energy</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Darkness</subject><subject>Dichloromethane</subject><subject>Fluorescence</subject><subject>Humans</subject><subject>Hypoxia</subject><subject>imaging agents</subject><subject>Irradiation</subject><subject>Lasers</subject><subject>nanoparticles</subject><subject>Optical Imaging</subject><subject>Oxygen</subject><subject>Photodynamic therapy</subject><subject>Phototherapy</subject><subject>Phototherapy - methods</subject><subject>photothermal therapy</subject><subject>Physical Sciences</subject><subject>Polyethylene glycol</subject><subject>Polyethylene Glycols - chemistry</subject><subject>Polymers</subject><subject>Pyrrolidinones - chemistry</subject><subject>Science & Technology</subject><subject>Singlet oxygen</subject><subject>Singlet Oxygen - chemistry</subject><subject>Singlet Oxygen - metabolism</subject><subject>Stilbenes - chemistry</subject><subject>theranostics</subject><subject>Tumor Hypoxia - radiation effects</subject><subject>Tumor Microenvironment - radiation effects</subject><subject>Tumors</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><recordid>eNqNkEFP3DAQha2qqFDaa4-VpR6rbD1xHDvHVaAFiQISe4-c7GQxzdqL7VDy7-vVLtsjzGXm8L03M4-QL8BmwFj-Q1uDs5xBBQVXxTtyAiKHjEvJ36e54DyTSsAx-RjCQ-KVYuUHcsyhKnjJ8hPyOKe39y66eI9eWxei6ehd9DriaqLR0drZaOzoxjBM9AwH84Se3hm7GjDSm-dphZYaS5Ocnmn_h2q7pBfTxj0nn8W4dp7-Np13aJ-Md3aNNn4iR70eAn7e91Oy-Hm-qC-yq5tfl_X8KusKwYpM9FVbqQr6QvZS63KpVFkBcKGgW0Kely1AzrVoWxBSlQx1mplAjaLjAvkp-baz3Xj3OGKIzYMbvU0bm7xgZS6BVzJRsx2VbgzBY99svFlrPzXAmm3AzTbg5hBwEnzd247tGpcH_CXRBHzfAX-xdX3oDNoODxhjTACTVcm2BYlWb6drE3U0ztZutDFJq73UDDi9cnczv748___FP9f6qRA</recordid><startdate>20200602</startdate><enddate>20200602</enddate><creator>Zou, Jianhua</creator><creator>Zhu, Jianwei</creator><creator>Yang, Zhen</creator><creator>Li, Ling</creator><creator>Fan, Wenpei</creator><creator>He, Liangcan</creator><creator>Tang, Wei</creator><creator>Deng, Liming</creator><creator>Mu, Jing</creator><creator>Ma, Yuanyuan</creator><creator>Cheng, Yaya</creator><creator>Huang, Wei</creator><creator>Dong, Xiaochen</creator><creator>Chen, Xiaoyuan</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>1KM</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><orcidid>https://orcid.org/0000-0002-9622-0870</orcidid><orcidid>https://orcid.org/0000-0003-0718-9128</orcidid><orcidid>https://orcid.org/0000-0001-7004-6408</orcidid></search><sort><creationdate>20200602</creationdate><title>A Phototheranostic Strategy to Continuously Deliver Singlet Oxygen in the Dark and Hypoxic Tumor Microenvironment</title><author>Zou, Jianhua ; Zhu, Jianwei ; Yang, Zhen ; Li, Ling ; Fan, Wenpei ; He, Liangcan ; Tang, Wei ; Deng, Liming ; Mu, Jing ; Ma, Yuanyuan ; Cheng, Yaya ; Huang, Wei ; Dong, Xiaochen ; Chen, Xiaoyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4504-5f9b9891f47f7aa6d8869113581cd1226b1123a5bb157860eaa5b05eae5c35e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cell Line, Tumor</topic><topic>Cell Proliferation - radiation effects</topic><topic>Chemical energy</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Darkness</topic><topic>Dichloromethane</topic><topic>Fluorescence</topic><topic>Humans</topic><topic>Hypoxia</topic><topic>imaging agents</topic><topic>Irradiation</topic><topic>Lasers</topic><topic>nanoparticles</topic><topic>Optical Imaging</topic><topic>Oxygen</topic><topic>Photodynamic therapy</topic><topic>Phototherapy</topic><topic>Phototherapy - methods</topic><topic>photothermal therapy</topic><topic>Physical Sciences</topic><topic>Polyethylene glycol</topic><topic>Polyethylene Glycols - chemistry</topic><topic>Polymers</topic><topic>Pyrrolidinones - chemistry</topic><topic>Science & Technology</topic><topic>Singlet oxygen</topic><topic>Singlet Oxygen - chemistry</topic><topic>Singlet Oxygen - metabolism</topic><topic>Stilbenes - chemistry</topic><topic>theranostics</topic><topic>Tumor Hypoxia - radiation effects</topic><topic>Tumor Microenvironment - radiation effects</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zou, Jianhua</creatorcontrib><creatorcontrib>Zhu, Jianwei</creatorcontrib><creatorcontrib>Yang, Zhen</creatorcontrib><creatorcontrib>Li, Ling</creatorcontrib><creatorcontrib>Fan, Wenpei</creatorcontrib><creatorcontrib>He, Liangcan</creatorcontrib><creatorcontrib>Tang, Wei</creatorcontrib><creatorcontrib>Deng, Liming</creatorcontrib><creatorcontrib>Mu, Jing</creatorcontrib><creatorcontrib>Ma, Yuanyuan</creatorcontrib><creatorcontrib>Cheng, Yaya</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Dong, Xiaochen</creatorcontrib><creatorcontrib>Chen, Xiaoyuan</creatorcontrib><collection>Index Chemicus</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zou, Jianhua</au><au>Zhu, Jianwei</au><au>Yang, Zhen</au><au>Li, Ling</au><au>Fan, Wenpei</au><au>He, Liangcan</au><au>Tang, Wei</au><au>Deng, Liming</au><au>Mu, Jing</au><au>Ma, Yuanyuan</au><au>Cheng, Yaya</au><au>Huang, Wei</au><au>Dong, Xiaochen</au><au>Chen, Xiaoyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Phototheranostic Strategy to Continuously Deliver Singlet Oxygen in the Dark and Hypoxic Tumor Microenvironment</atitle><jtitle>Angewandte Chemie International Edition</jtitle><stitle>ANGEW CHEM INT EDIT</stitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2020-06-02</date><risdate>2020</risdate><volume>59</volume><issue>23</issue><spage>8833</spage><epage>8838</epage><pages>8833-8838</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Continuous irradiation during photodynamic therapy (PDT) inevitably induces tumor hypoxia, thereby weakening the PDT effect. In PDT‐induced hypoxia, providing singlet oxygen from stored chemical energy may enhance the cell‐killing effect and boost the therapeutic effect. Herein, we present a phototheranostic (DPPTPE@PEG‐Py NPs) prepared by using a 2‐pyridone‐based diblock polymer (PEG‐Py) to encapsulate a semiconducting, heavy‐atom‐free pyrrolopyrrolidone‐tetraphenylethylene (DPPTPE) with high singlet‐oxygen‐generation ability both in dichloromethane and water. The PEG‐Py can trap the 1O2 generated from DPPTPE under laser irradiation and form a stable intermediate of endoperoxide, which can then release 1O2 in the dark, hypoxic tumor microenvironment. Furthermore, fluorescence‐imaging‐guided phototherapy demonstrates that this phototheranostic could completely inhibit tumor growth with the help of laser irradiation.
Continuous photodynamic therapy: A 2‐pyridone‐based diblock polymer (PEG‐Py) was used to encapsulate the semiconducting, heavy‐atom‐free, photosensitizer pyrrolopyrrolidone‐tetraphenylethylene (DPPTPE). PEG‐Py can trap the 1O2 generated from DPPTPE under laser irradiation and then release 1O2 in the dark, hypoxic tumor microenvironment. As this nanoparticle can also be used for fluorescence‐guided imaging, it could be used as a phototheranostic agent.</abstract><cop>WEINHEIM</cop><pub>Wiley</pub><pmid>31943602</pmid><doi>10.1002/anie.201914384</doi><tpages>6</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-9622-0870</orcidid><orcidid>https://orcid.org/0000-0003-0718-9128</orcidid><orcidid>https://orcid.org/0000-0001-7004-6408</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2020-06, Vol.59 (23), p.8833-8838 |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_proquest_journals_2406271397 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Cell Line, Tumor Cell Proliferation - radiation effects Chemical energy Chemistry Chemistry, Multidisciplinary Darkness Dichloromethane Fluorescence Humans Hypoxia imaging agents Irradiation Lasers nanoparticles Optical Imaging Oxygen Photodynamic therapy Phototherapy Phototherapy - methods photothermal therapy Physical Sciences Polyethylene glycol Polyethylene Glycols - chemistry Polymers Pyrrolidinones - chemistry Science & Technology Singlet oxygen Singlet Oxygen - chemistry Singlet Oxygen - metabolism Stilbenes - chemistry theranostics Tumor Hypoxia - radiation effects Tumor Microenvironment - radiation effects Tumors |
title | A Phototheranostic Strategy to Continuously Deliver Singlet Oxygen in the Dark and Hypoxic Tumor Microenvironment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T08%3A08%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Phototheranostic%20Strategy%20to%20Continuously%20Deliver%20Singlet%20Oxygen%20in%20the%20Dark%20and%20Hypoxic%20Tumor%20Microenvironment&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Zou,%20Jianhua&rft.date=2020-06-02&rft.volume=59&rft.issue=23&rft.spage=8833&rft.epage=8838&rft.pages=8833-8838&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.201914384&rft_dat=%3Cproquest_cross%3E2406271397%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2406271397&rft_id=info:pmid/31943602&rfr_iscdi=true |