Dissecting innovative trend analysis

Investigating the nature of trends in time series is one of the most common analyses performed in hydro-climate research. However, trend analysis is also widely abused and misused, often overlooking its underlying assumptions, which prevent its application to certain types of data. A mechanistic app...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Stochastic environmental research and risk assessment 2020-05, Vol.34 (5), p.733-754
Hauptverfasser: Serinaldi, Francesco, Chebana, Fateh, Kilsby, Chris G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 754
container_issue 5
container_start_page 733
container_title Stochastic environmental research and risk assessment
container_volume 34
creator Serinaldi, Francesco
Chebana, Fateh
Kilsby, Chris G.
description Investigating the nature of trends in time series is one of the most common analyses performed in hydro-climate research. However, trend analysis is also widely abused and misused, often overlooking its underlying assumptions, which prevent its application to certain types of data. A mechanistic application of graphical diagnostics and statistical hypothesis tests for deterministic trends available in ready-to-use software can result in misleading conclusions. This problem is exacerbated by the existence of questionable methodologies that lack a sound theoretical basis. As a paradigmatic example, we consider the so-called Şen’s ‘innovative’ trend analysis (ITA) and the corresponding formal trend tests. Reviewing each element of ITA, we show that (1) ITA diagrams are equivalent to well-known two-sample quantile-quantile (q–q) plots; (2) when applied to finite-size samples, ITA diagrams do not enable the type of trend analysis that it is supposed to do; (3) the expression of ITA confidence intervals quantifying the uncertainty of ITA diagrams is mathematically incorrect; and (4) the formulation of the formal tests is also incorrect and their correct version is equivalent to a standard parametric test for the difference between two means. Overall, we show that ITA methodology is affected by sample size, distribution shape, and serial correlation as any parametric technique devised for trend analysis. Therefore, our results call into question the ITA method and the interpretation of the corresponding empirical results reported in the literature.
doi_str_mv 10.1007/s00477-020-01797-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2405965813</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2405965813</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-9c0b2328fce0a73b7db53002b35190b894d7be3232c4e6d8f098c43a18bf0acf3</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWGr_gKuCbqMv82Ymk6XUTyi40XVIMkmJ1JmaNy3tvzc6ojtX7y3OuVwuY-cCrgSAvCaAUkoOBXAQUkm-P2ITUWLNsajU8e9fwimbEUWbpQqVEjBhl7eRyLshdqt57Lp-Z4a48_Mh-a6dm86sDxTpjJ0EsyY_-7lT9np_97J45Mvnh6fFzZI7rHHgyoEtsGiC82AkWtnaCgEKi5VQYBtVttJ6zIgrfd02AVTjSjSisQGMCzhlF2PuJvUfW0-Dfuu3KZcgnctXqq4agZkqRsqlnij5oDcpvpt00AL01yB6HETnQfT3IHqfJRwlynC38ukv-h_rEy4rYrE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2405965813</pqid></control><display><type>article</type><title>Dissecting innovative trend analysis</title><source>Springer Online Journals - JUSTICE</source><creator>Serinaldi, Francesco ; Chebana, Fateh ; Kilsby, Chris G.</creator><creatorcontrib>Serinaldi, Francesco ; Chebana, Fateh ; Kilsby, Chris G.</creatorcontrib><description>Investigating the nature of trends in time series is one of the most common analyses performed in hydro-climate research. However, trend analysis is also widely abused and misused, often overlooking its underlying assumptions, which prevent its application to certain types of data. A mechanistic application of graphical diagnostics and statistical hypothesis tests for deterministic trends available in ready-to-use software can result in misleading conclusions. This problem is exacerbated by the existence of questionable methodologies that lack a sound theoretical basis. As a paradigmatic example, we consider the so-called Şen’s ‘innovative’ trend analysis (ITA) and the corresponding formal trend tests. Reviewing each element of ITA, we show that (1) ITA diagrams are equivalent to well-known two-sample quantile-quantile (q–q) plots; (2) when applied to finite-size samples, ITA diagrams do not enable the type of trend analysis that it is supposed to do; (3) the expression of ITA confidence intervals quantifying the uncertainty of ITA diagrams is mathematically incorrect; and (4) the formulation of the formal tests is also incorrect and their correct version is equivalent to a standard parametric test for the difference between two means. Overall, we show that ITA methodology is affected by sample size, distribution shape, and serial correlation as any parametric technique devised for trend analysis. Therefore, our results call into question the ITA method and the interpretation of the corresponding empirical results reported in the literature.</description><identifier>ISSN: 1436-3240</identifier><identifier>EISSN: 1436-3259</identifier><identifier>DOI: 10.1007/s00477-020-01797-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aquatic Pollution ; Chemistry and Earth Sciences ; Computational Intelligence ; Computer Science ; Confidence intervals ; Earth and Environmental Science ; Earth Sciences ; Empirical analysis ; Environment ; Equivalence ; Hydroclimate ; Math. Appl. in Environmental Science ; Original Paper ; Physics ; Probability Theory and Stochastic Processes ; Statistical analysis ; Statistical methods ; Statistics for Engineering ; Trend analysis ; Trends ; Waste Water Technology ; Water Management ; Water Pollution Control</subject><ispartof>Stochastic environmental research and risk assessment, 2020-05, Vol.34 (5), p.733-754</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-9c0b2328fce0a73b7db53002b35190b894d7be3232c4e6d8f098c43a18bf0acf3</citedby><cites>FETCH-LOGICAL-c363t-9c0b2328fce0a73b7db53002b35190b894d7be3232c4e6d8f098c43a18bf0acf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00477-020-01797-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00477-020-01797-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Serinaldi, Francesco</creatorcontrib><creatorcontrib>Chebana, Fateh</creatorcontrib><creatorcontrib>Kilsby, Chris G.</creatorcontrib><title>Dissecting innovative trend analysis</title><title>Stochastic environmental research and risk assessment</title><addtitle>Stoch Environ Res Risk Assess</addtitle><description>Investigating the nature of trends in time series is one of the most common analyses performed in hydro-climate research. However, trend analysis is also widely abused and misused, often overlooking its underlying assumptions, which prevent its application to certain types of data. A mechanistic application of graphical diagnostics and statistical hypothesis tests for deterministic trends available in ready-to-use software can result in misleading conclusions. This problem is exacerbated by the existence of questionable methodologies that lack a sound theoretical basis. As a paradigmatic example, we consider the so-called Şen’s ‘innovative’ trend analysis (ITA) and the corresponding formal trend tests. Reviewing each element of ITA, we show that (1) ITA diagrams are equivalent to well-known two-sample quantile-quantile (q–q) plots; (2) when applied to finite-size samples, ITA diagrams do not enable the type of trend analysis that it is supposed to do; (3) the expression of ITA confidence intervals quantifying the uncertainty of ITA diagrams is mathematically incorrect; and (4) the formulation of the formal tests is also incorrect and their correct version is equivalent to a standard parametric test for the difference between two means. Overall, we show that ITA methodology is affected by sample size, distribution shape, and serial correlation as any parametric technique devised for trend analysis. Therefore, our results call into question the ITA method and the interpretation of the corresponding empirical results reported in the literature.</description><subject>Aquatic Pollution</subject><subject>Chemistry and Earth Sciences</subject><subject>Computational Intelligence</subject><subject>Computer Science</subject><subject>Confidence intervals</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Empirical analysis</subject><subject>Environment</subject><subject>Equivalence</subject><subject>Hydroclimate</subject><subject>Math. Appl. in Environmental Science</subject><subject>Original Paper</subject><subject>Physics</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Statistics for Engineering</subject><subject>Trend analysis</subject><subject>Trends</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><issn>1436-3240</issn><issn>1436-3259</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kE1LAzEURYMoWGr_gKuCbqMv82Ymk6XUTyi40XVIMkmJ1JmaNy3tvzc6ojtX7y3OuVwuY-cCrgSAvCaAUkoOBXAQUkm-P2ITUWLNsajU8e9fwimbEUWbpQqVEjBhl7eRyLshdqt57Lp-Z4a48_Mh-a6dm86sDxTpjJ0EsyY_-7lT9np_97J45Mvnh6fFzZI7rHHgyoEtsGiC82AkWtnaCgEKi5VQYBtVttJ6zIgrfd02AVTjSjSisQGMCzhlF2PuJvUfW0-Dfuu3KZcgnctXqq4agZkqRsqlnij5oDcpvpt00AL01yB6HETnQfT3IHqfJRwlynC38ukv-h_rEy4rYrE</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Serinaldi, Francesco</creator><creator>Chebana, Fateh</creator><creator>Kilsby, Chris G.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0W</scope><scope>SOI</scope></search><sort><creationdate>20200501</creationdate><title>Dissecting innovative trend analysis</title><author>Serinaldi, Francesco ; Chebana, Fateh ; Kilsby, Chris G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-9c0b2328fce0a73b7db53002b35190b894d7be3232c4e6d8f098c43a18bf0acf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aquatic Pollution</topic><topic>Chemistry and Earth Sciences</topic><topic>Computational Intelligence</topic><topic>Computer Science</topic><topic>Confidence intervals</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Empirical analysis</topic><topic>Environment</topic><topic>Equivalence</topic><topic>Hydroclimate</topic><topic>Math. Appl. in Environmental Science</topic><topic>Original Paper</topic><topic>Physics</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Statistics for Engineering</topic><topic>Trend analysis</topic><topic>Trends</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Serinaldi, Francesco</creatorcontrib><creatorcontrib>Chebana, Fateh</creatorcontrib><creatorcontrib>Kilsby, Chris G.</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>Environment Abstracts</collection><jtitle>Stochastic environmental research and risk assessment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Serinaldi, Francesco</au><au>Chebana, Fateh</au><au>Kilsby, Chris G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dissecting innovative trend analysis</atitle><jtitle>Stochastic environmental research and risk assessment</jtitle><stitle>Stoch Environ Res Risk Assess</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>34</volume><issue>5</issue><spage>733</spage><epage>754</epage><pages>733-754</pages><issn>1436-3240</issn><eissn>1436-3259</eissn><abstract>Investigating the nature of trends in time series is one of the most common analyses performed in hydro-climate research. However, trend analysis is also widely abused and misused, often overlooking its underlying assumptions, which prevent its application to certain types of data. A mechanistic application of graphical diagnostics and statistical hypothesis tests for deterministic trends available in ready-to-use software can result in misleading conclusions. This problem is exacerbated by the existence of questionable methodologies that lack a sound theoretical basis. As a paradigmatic example, we consider the so-called Şen’s ‘innovative’ trend analysis (ITA) and the corresponding formal trend tests. Reviewing each element of ITA, we show that (1) ITA diagrams are equivalent to well-known two-sample quantile-quantile (q–q) plots; (2) when applied to finite-size samples, ITA diagrams do not enable the type of trend analysis that it is supposed to do; (3) the expression of ITA confidence intervals quantifying the uncertainty of ITA diagrams is mathematically incorrect; and (4) the formulation of the formal tests is also incorrect and their correct version is equivalent to a standard parametric test for the difference between two means. Overall, we show that ITA methodology is affected by sample size, distribution shape, and serial correlation as any parametric technique devised for trend analysis. Therefore, our results call into question the ITA method and the interpretation of the corresponding empirical results reported in the literature.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00477-020-01797-x</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1436-3240
ispartof Stochastic environmental research and risk assessment, 2020-05, Vol.34 (5), p.733-754
issn 1436-3240
1436-3259
language eng
recordid cdi_proquest_journals_2405965813
source Springer Online Journals - JUSTICE
subjects Aquatic Pollution
Chemistry and Earth Sciences
Computational Intelligence
Computer Science
Confidence intervals
Earth and Environmental Science
Earth Sciences
Empirical analysis
Environment
Equivalence
Hydroclimate
Math. Appl. in Environmental Science
Original Paper
Physics
Probability Theory and Stochastic Processes
Statistical analysis
Statistical methods
Statistics for Engineering
Trend analysis
Trends
Waste Water Technology
Water Management
Water Pollution Control
title Dissecting innovative trend analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T15%3A00%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dissecting%20innovative%20trend%20analysis&rft.jtitle=Stochastic%20environmental%20research%20and%20risk%20assessment&rft.au=Serinaldi,%20Francesco&rft.date=2020-05-01&rft.volume=34&rft.issue=5&rft.spage=733&rft.epage=754&rft.pages=733-754&rft.issn=1436-3240&rft.eissn=1436-3259&rft_id=info:doi/10.1007/s00477-020-01797-x&rft_dat=%3Cproquest_cross%3E2405965813%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2405965813&rft_id=info:pmid/&rfr_iscdi=true