Ionizing Radiation Influence on Rubrene-Based Metal Polymer Semiconductors: Direct Information of Intrinsic Electrical Properties
A rubrene-based nanostructure has been prepared by applying the evaporation method at room temperature. The 60 Co γ -ray irradiation effects on the electrical properties of the rubrene nanostructure were also examined by measuring current–voltage values. Standard, Norde, and Cheung methods have been...
Gespeichert in:
Veröffentlicht in: | JOM (1989) 2020-06, Vol.72 (6), p.2391-2397 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2397 |
---|---|
container_issue | 6 |
container_start_page | 2391 |
container_title | JOM (1989) |
container_volume | 72 |
creator | Akay, D. Gokmen, U. Ocak, S. B. |
description | A rubrene-based nanostructure has been prepared by applying the evaporation method at room temperature. The
60
Co
γ
-ray irradiation effects on the electrical properties of the rubrene nanostructure were also examined by measuring current–voltage values. Standard, Norde, and Cheung methods have been used to obtain series resistance, interface states, barrier height, and an ideality factor before and after gamma rays. After obtaining the required information from these methods, they have been compared with each other before and after irradiation. The behavior of barrier height is dependent on the evaluated methods. Cheung, Standard, and Norde functions are different from each other owing to extraction from different regions of the plots. It has also been revealed that the ideality factor values for all the methods decrease with irradiation as do the electrical properties, such as series resistance evaluated using Norde and Cheung methods. These two methods give the same results. All the methods revealed that the series resistance values increase with irradiation. Further, these parameters are dependent on the strong functions of voltage. |
doi_str_mv | 10.1007/s11837-020-04156-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2405915533</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2405915533</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f983305a06eb6f41faa7717bd973b0cdbd9a427c1fd3f3b3b3d844b0ccdf7963</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxRdRsFa_gKeA52iyyW52vWmtWqgotfeQzZ-Ssk1qsgutN7-5qSt4kznMDPN-b-Bl2SVG1xghdhMxrgiDKEcQUVyUcHeUjXBBCcRVgY_TjCiDtCLVaXYW4xoliNZ4lH3NvLOf1q3AQigrOusdmDnT9tpJDdKy6JugnYb3ImoFXnQnWvDm2_1GB_CuN1Z6p3rZ-RBvwYMNWnYH3ofN4OVNWrtgXbQSTNt0DlYeLILf6tBZHc-zEyPaqC9--zhbPk6Xk2c4f32aTe7mUBJcd9DUFSGoEKjUTWkoNkIwhlmjakYaJFUaBM2ZxEYRQ5pUqqI0XaQyrC7JOLsabLfBf_Q6dnzt--DSR55TVNS4KAhJqnxQyeBjDNrwbbAbEfYcI35Img9J85Q0_0ma7xJEBigmsVvp8Gf9D_UNaXGEtA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2405915533</pqid></control><display><type>article</type><title>Ionizing Radiation Influence on Rubrene-Based Metal Polymer Semiconductors: Direct Information of Intrinsic Electrical Properties</title><source>Springer Nature - Complete Springer Journals</source><creator>Akay, D. ; Gokmen, U. ; Ocak, S. B.</creator><creatorcontrib>Akay, D. ; Gokmen, U. ; Ocak, S. B.</creatorcontrib><description>A rubrene-based nanostructure has been prepared by applying the evaporation method at room temperature. The
60
Co
γ
-ray irradiation effects on the electrical properties of the rubrene nanostructure were also examined by measuring current–voltage values. Standard, Norde, and Cheung methods have been used to obtain series resistance, interface states, barrier height, and an ideality factor before and after gamma rays. After obtaining the required information from these methods, they have been compared with each other before and after irradiation. The behavior of barrier height is dependent on the evaluated methods. Cheung, Standard, and Norde functions are different from each other owing to extraction from different regions of the plots. It has also been revealed that the ideality factor values for all the methods decrease with irradiation as do the electrical properties, such as series resistance evaluated using Norde and Cheung methods. These two methods give the same results. All the methods revealed that the series resistance values increase with irradiation. Further, these parameters are dependent on the strong functions of voltage.</description><identifier>ISSN: 1047-4838</identifier><identifier>EISSN: 1543-1851</identifier><identifier>DOI: 10.1007/s11837-020-04156-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aluminum ; Chemistry/Food Science ; Defects ; Earth Sciences ; Electric fields ; Electric potential ; Electrical properties ; Engineering ; Environment ; Evaluation ; Gamma rays ; Hydrocarbons ; Ionizing radiation ; Irradiation ; Methods ; Nanostructure ; Physics ; Polymers ; Power plants ; Radiation ; Researchers ; Room temperature ; Semiconductors ; Single crystals ; Spectrum analysis ; Studies ; Technical Article ; Voltage</subject><ispartof>JOM (1989), 2020-06, Vol.72 (6), p.2391-2397</ispartof><rights>The Minerals, Metals & Materials Society 2020</rights><rights>Copyright Springer Nature B.V. Jun 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f983305a06eb6f41faa7717bd973b0cdbd9a427c1fd3f3b3b3d844b0ccdf7963</citedby><cites>FETCH-LOGICAL-c319t-f983305a06eb6f41faa7717bd973b0cdbd9a427c1fd3f3b3b3d844b0ccdf7963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11837-020-04156-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11837-020-04156-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Akay, D.</creatorcontrib><creatorcontrib>Gokmen, U.</creatorcontrib><creatorcontrib>Ocak, S. B.</creatorcontrib><title>Ionizing Radiation Influence on Rubrene-Based Metal Polymer Semiconductors: Direct Information of Intrinsic Electrical Properties</title><title>JOM (1989)</title><addtitle>JOM</addtitle><description>A rubrene-based nanostructure has been prepared by applying the evaporation method at room temperature. The
60
Co
γ
-ray irradiation effects on the electrical properties of the rubrene nanostructure were also examined by measuring current–voltage values. Standard, Norde, and Cheung methods have been used to obtain series resistance, interface states, barrier height, and an ideality factor before and after gamma rays. After obtaining the required information from these methods, they have been compared with each other before and after irradiation. The behavior of barrier height is dependent on the evaluated methods. Cheung, Standard, and Norde functions are different from each other owing to extraction from different regions of the plots. It has also been revealed that the ideality factor values for all the methods decrease with irradiation as do the electrical properties, such as series resistance evaluated using Norde and Cheung methods. These two methods give the same results. All the methods revealed that the series resistance values increase with irradiation. Further, these parameters are dependent on the strong functions of voltage.</description><subject>Aluminum</subject><subject>Chemistry/Food Science</subject><subject>Defects</subject><subject>Earth Sciences</subject><subject>Electric fields</subject><subject>Electric potential</subject><subject>Electrical properties</subject><subject>Engineering</subject><subject>Environment</subject><subject>Evaluation</subject><subject>Gamma rays</subject><subject>Hydrocarbons</subject><subject>Ionizing radiation</subject><subject>Irradiation</subject><subject>Methods</subject><subject>Nanostructure</subject><subject>Physics</subject><subject>Polymers</subject><subject>Power plants</subject><subject>Radiation</subject><subject>Researchers</subject><subject>Room temperature</subject><subject>Semiconductors</subject><subject>Single crystals</subject><subject>Spectrum analysis</subject><subject>Studies</subject><subject>Technical Article</subject><subject>Voltage</subject><issn>1047-4838</issn><issn>1543-1851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE9LAzEQxRdRsFa_gKeA52iyyW52vWmtWqgotfeQzZ-Ssk1qsgutN7-5qSt4kznMDPN-b-Bl2SVG1xghdhMxrgiDKEcQUVyUcHeUjXBBCcRVgY_TjCiDtCLVaXYW4xoliNZ4lH3NvLOf1q3AQigrOusdmDnT9tpJDdKy6JugnYb3ImoFXnQnWvDm2_1GB_CuN1Z6p3rZ-RBvwYMNWnYH3ofN4OVNWrtgXbQSTNt0DlYeLILf6tBZHc-zEyPaqC9--zhbPk6Xk2c4f32aTe7mUBJcd9DUFSGoEKjUTWkoNkIwhlmjakYaJFUaBM2ZxEYRQ5pUqqI0XaQyrC7JOLsabLfBf_Q6dnzt--DSR55TVNS4KAhJqnxQyeBjDNrwbbAbEfYcI35Img9J85Q0_0ma7xJEBigmsVvp8Gf9D_UNaXGEtA</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Akay, D.</creator><creator>Gokmen, U.</creator><creator>Ocak, S. B.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7TA</scope><scope>7WY</scope><scope>7XB</scope><scope>883</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>M0F</scope><scope>M2P</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20200601</creationdate><title>Ionizing Radiation Influence on Rubrene-Based Metal Polymer Semiconductors: Direct Information of Intrinsic Electrical Properties</title><author>Akay, D. ; Gokmen, U. ; Ocak, S. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f983305a06eb6f41faa7717bd973b0cdbd9a427c1fd3f3b3b3d844b0ccdf7963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aluminum</topic><topic>Chemistry/Food Science</topic><topic>Defects</topic><topic>Earth Sciences</topic><topic>Electric fields</topic><topic>Electric potential</topic><topic>Electrical properties</topic><topic>Engineering</topic><topic>Environment</topic><topic>Evaluation</topic><topic>Gamma rays</topic><topic>Hydrocarbons</topic><topic>Ionizing radiation</topic><topic>Irradiation</topic><topic>Methods</topic><topic>Nanostructure</topic><topic>Physics</topic><topic>Polymers</topic><topic>Power plants</topic><topic>Radiation</topic><topic>Researchers</topic><topic>Room temperature</topic><topic>Semiconductors</topic><topic>Single crystals</topic><topic>Spectrum analysis</topic><topic>Studies</topic><topic>Technical Article</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akay, D.</creatorcontrib><creatorcontrib>Gokmen, U.</creatorcontrib><creatorcontrib>Ocak, S. B.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Trade & Industry (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Trade & Industry</collection><collection>Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>JOM (1989)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akay, D.</au><au>Gokmen, U.</au><au>Ocak, S. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ionizing Radiation Influence on Rubrene-Based Metal Polymer Semiconductors: Direct Information of Intrinsic Electrical Properties</atitle><jtitle>JOM (1989)</jtitle><stitle>JOM</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>72</volume><issue>6</issue><spage>2391</spage><epage>2397</epage><pages>2391-2397</pages><issn>1047-4838</issn><eissn>1543-1851</eissn><abstract>A rubrene-based nanostructure has been prepared by applying the evaporation method at room temperature. The
60
Co
γ
-ray irradiation effects on the electrical properties of the rubrene nanostructure were also examined by measuring current–voltage values. Standard, Norde, and Cheung methods have been used to obtain series resistance, interface states, barrier height, and an ideality factor before and after gamma rays. After obtaining the required information from these methods, they have been compared with each other before and after irradiation. The behavior of barrier height is dependent on the evaluated methods. Cheung, Standard, and Norde functions are different from each other owing to extraction from different regions of the plots. It has also been revealed that the ideality factor values for all the methods decrease with irradiation as do the electrical properties, such as series resistance evaluated using Norde and Cheung methods. These two methods give the same results. All the methods revealed that the series resistance values increase with irradiation. Further, these parameters are dependent on the strong functions of voltage.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11837-020-04156-x</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1047-4838 |
ispartof | JOM (1989), 2020-06, Vol.72 (6), p.2391-2397 |
issn | 1047-4838 1543-1851 |
language | eng |
recordid | cdi_proquest_journals_2405915533 |
source | Springer Nature - Complete Springer Journals |
subjects | Aluminum Chemistry/Food Science Defects Earth Sciences Electric fields Electric potential Electrical properties Engineering Environment Evaluation Gamma rays Hydrocarbons Ionizing radiation Irradiation Methods Nanostructure Physics Polymers Power plants Radiation Researchers Room temperature Semiconductors Single crystals Spectrum analysis Studies Technical Article Voltage |
title | Ionizing Radiation Influence on Rubrene-Based Metal Polymer Semiconductors: Direct Information of Intrinsic Electrical Properties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T21%3A41%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ionizing%20Radiation%20Influence%20on%20Rubrene-Based%20Metal%20Polymer%20Semiconductors:%20Direct%20Information%20of%20Intrinsic%20Electrical%20Properties&rft.jtitle=JOM%20(1989)&rft.au=Akay,%20D.&rft.date=2020-06-01&rft.volume=72&rft.issue=6&rft.spage=2391&rft.epage=2397&rft.pages=2391-2397&rft.issn=1047-4838&rft.eissn=1543-1851&rft_id=info:doi/10.1007/s11837-020-04156-x&rft_dat=%3Cproquest_cross%3E2405915533%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2405915533&rft_id=info:pmid/&rfr_iscdi=true |