Ionizing Radiation Influence on Rubrene-Based Metal Polymer Semiconductors: Direct Information of Intrinsic Electrical Properties

A rubrene-based nanostructure has been prepared by applying the evaporation method at room temperature. The 60 Co γ -ray irradiation effects on the electrical properties of the rubrene nanostructure were also examined by measuring current–voltage values. Standard, Norde, and Cheung methods have been...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JOM (1989) 2020-06, Vol.72 (6), p.2391-2397
Hauptverfasser: Akay, D., Gokmen, U., Ocak, S. B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2397
container_issue 6
container_start_page 2391
container_title JOM (1989)
container_volume 72
creator Akay, D.
Gokmen, U.
Ocak, S. B.
description A rubrene-based nanostructure has been prepared by applying the evaporation method at room temperature. The 60 Co γ -ray irradiation effects on the electrical properties of the rubrene nanostructure were also examined by measuring current–voltage values. Standard, Norde, and Cheung methods have been used to obtain series resistance, interface states, barrier height, and an ideality factor before and after gamma rays. After obtaining the required information from these methods, they have been compared with each other before and after irradiation. The behavior of barrier height is dependent on the evaluated methods. Cheung, Standard, and Norde functions are different from each other owing to extraction from different regions of the plots. It has also been revealed that the ideality factor values for all the methods decrease with irradiation as do the electrical properties, such as series resistance evaluated using Norde and Cheung methods. These two methods give the same results. All the methods revealed that the series resistance values increase with irradiation. Further, these parameters are dependent on the strong functions of voltage.
doi_str_mv 10.1007/s11837-020-04156-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2405915533</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2405915533</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f983305a06eb6f41faa7717bd973b0cdbd9a427c1fd3f3b3b3d844b0ccdf7963</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxRdRsFa_gKeA52iyyW52vWmtWqgotfeQzZ-Ssk1qsgutN7-5qSt4kznMDPN-b-Bl2SVG1xghdhMxrgiDKEcQUVyUcHeUjXBBCcRVgY_TjCiDtCLVaXYW4xoliNZ4lH3NvLOf1q3AQigrOusdmDnT9tpJDdKy6JugnYb3ImoFXnQnWvDm2_1GB_CuN1Z6p3rZ-RBvwYMNWnYH3ofN4OVNWrtgXbQSTNt0DlYeLILf6tBZHc-zEyPaqC9--zhbPk6Xk2c4f32aTe7mUBJcd9DUFSGoEKjUTWkoNkIwhlmjakYaJFUaBM2ZxEYRQ5pUqqI0XaQyrC7JOLsabLfBf_Q6dnzt--DSR55TVNS4KAhJqnxQyeBjDNrwbbAbEfYcI35Img9J85Q0_0ma7xJEBigmsVvp8Gf9D_UNaXGEtA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2405915533</pqid></control><display><type>article</type><title>Ionizing Radiation Influence on Rubrene-Based Metal Polymer Semiconductors: Direct Information of Intrinsic Electrical Properties</title><source>Springer Nature - Complete Springer Journals</source><creator>Akay, D. ; Gokmen, U. ; Ocak, S. B.</creator><creatorcontrib>Akay, D. ; Gokmen, U. ; Ocak, S. B.</creatorcontrib><description>A rubrene-based nanostructure has been prepared by applying the evaporation method at room temperature. The 60 Co γ -ray irradiation effects on the electrical properties of the rubrene nanostructure were also examined by measuring current–voltage values. Standard, Norde, and Cheung methods have been used to obtain series resistance, interface states, barrier height, and an ideality factor before and after gamma rays. After obtaining the required information from these methods, they have been compared with each other before and after irradiation. The behavior of barrier height is dependent on the evaluated methods. Cheung, Standard, and Norde functions are different from each other owing to extraction from different regions of the plots. It has also been revealed that the ideality factor values for all the methods decrease with irradiation as do the electrical properties, such as series resistance evaluated using Norde and Cheung methods. These two methods give the same results. All the methods revealed that the series resistance values increase with irradiation. Further, these parameters are dependent on the strong functions of voltage.</description><identifier>ISSN: 1047-4838</identifier><identifier>EISSN: 1543-1851</identifier><identifier>DOI: 10.1007/s11837-020-04156-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aluminum ; Chemistry/Food Science ; Defects ; Earth Sciences ; Electric fields ; Electric potential ; Electrical properties ; Engineering ; Environment ; Evaluation ; Gamma rays ; Hydrocarbons ; Ionizing radiation ; Irradiation ; Methods ; Nanostructure ; Physics ; Polymers ; Power plants ; Radiation ; Researchers ; Room temperature ; Semiconductors ; Single crystals ; Spectrum analysis ; Studies ; Technical Article ; Voltage</subject><ispartof>JOM (1989), 2020-06, Vol.72 (6), p.2391-2397</ispartof><rights>The Minerals, Metals &amp; Materials Society 2020</rights><rights>Copyright Springer Nature B.V. Jun 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f983305a06eb6f41faa7717bd973b0cdbd9a427c1fd3f3b3b3d844b0ccdf7963</citedby><cites>FETCH-LOGICAL-c319t-f983305a06eb6f41faa7717bd973b0cdbd9a427c1fd3f3b3b3d844b0ccdf7963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11837-020-04156-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11837-020-04156-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Akay, D.</creatorcontrib><creatorcontrib>Gokmen, U.</creatorcontrib><creatorcontrib>Ocak, S. B.</creatorcontrib><title>Ionizing Radiation Influence on Rubrene-Based Metal Polymer Semiconductors: Direct Information of Intrinsic Electrical Properties</title><title>JOM (1989)</title><addtitle>JOM</addtitle><description>A rubrene-based nanostructure has been prepared by applying the evaporation method at room temperature. The 60 Co γ -ray irradiation effects on the electrical properties of the rubrene nanostructure were also examined by measuring current–voltage values. Standard, Norde, and Cheung methods have been used to obtain series resistance, interface states, barrier height, and an ideality factor before and after gamma rays. After obtaining the required information from these methods, they have been compared with each other before and after irradiation. The behavior of barrier height is dependent on the evaluated methods. Cheung, Standard, and Norde functions are different from each other owing to extraction from different regions of the plots. It has also been revealed that the ideality factor values for all the methods decrease with irradiation as do the electrical properties, such as series resistance evaluated using Norde and Cheung methods. These two methods give the same results. All the methods revealed that the series resistance values increase with irradiation. Further, these parameters are dependent on the strong functions of voltage.</description><subject>Aluminum</subject><subject>Chemistry/Food Science</subject><subject>Defects</subject><subject>Earth Sciences</subject><subject>Electric fields</subject><subject>Electric potential</subject><subject>Electrical properties</subject><subject>Engineering</subject><subject>Environment</subject><subject>Evaluation</subject><subject>Gamma rays</subject><subject>Hydrocarbons</subject><subject>Ionizing radiation</subject><subject>Irradiation</subject><subject>Methods</subject><subject>Nanostructure</subject><subject>Physics</subject><subject>Polymers</subject><subject>Power plants</subject><subject>Radiation</subject><subject>Researchers</subject><subject>Room temperature</subject><subject>Semiconductors</subject><subject>Single crystals</subject><subject>Spectrum analysis</subject><subject>Studies</subject><subject>Technical Article</subject><subject>Voltage</subject><issn>1047-4838</issn><issn>1543-1851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE9LAzEQxRdRsFa_gKeA52iyyW52vWmtWqgotfeQzZ-Ssk1qsgutN7-5qSt4kznMDPN-b-Bl2SVG1xghdhMxrgiDKEcQUVyUcHeUjXBBCcRVgY_TjCiDtCLVaXYW4xoliNZ4lH3NvLOf1q3AQigrOusdmDnT9tpJDdKy6JugnYb3ImoFXnQnWvDm2_1GB_CuN1Z6p3rZ-RBvwYMNWnYH3ofN4OVNWrtgXbQSTNt0DlYeLILf6tBZHc-zEyPaqC9--zhbPk6Xk2c4f32aTe7mUBJcd9DUFSGoEKjUTWkoNkIwhlmjakYaJFUaBM2ZxEYRQ5pUqqI0XaQyrC7JOLsabLfBf_Q6dnzt--DSR55TVNS4KAhJqnxQyeBjDNrwbbAbEfYcI35Img9J85Q0_0ma7xJEBigmsVvp8Gf9D_UNaXGEtA</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Akay, D.</creator><creator>Gokmen, U.</creator><creator>Ocak, S. B.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7TA</scope><scope>7WY</scope><scope>7XB</scope><scope>883</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>M0F</scope><scope>M2P</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20200601</creationdate><title>Ionizing Radiation Influence on Rubrene-Based Metal Polymer Semiconductors: Direct Information of Intrinsic Electrical Properties</title><author>Akay, D. ; Gokmen, U. ; Ocak, S. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f983305a06eb6f41faa7717bd973b0cdbd9a427c1fd3f3b3b3d844b0ccdf7963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aluminum</topic><topic>Chemistry/Food Science</topic><topic>Defects</topic><topic>Earth Sciences</topic><topic>Electric fields</topic><topic>Electric potential</topic><topic>Electrical properties</topic><topic>Engineering</topic><topic>Environment</topic><topic>Evaluation</topic><topic>Gamma rays</topic><topic>Hydrocarbons</topic><topic>Ionizing radiation</topic><topic>Irradiation</topic><topic>Methods</topic><topic>Nanostructure</topic><topic>Physics</topic><topic>Polymers</topic><topic>Power plants</topic><topic>Radiation</topic><topic>Researchers</topic><topic>Room temperature</topic><topic>Semiconductors</topic><topic>Single crystals</topic><topic>Spectrum analysis</topic><topic>Studies</topic><topic>Technical Article</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akay, D.</creatorcontrib><creatorcontrib>Gokmen, U.</creatorcontrib><creatorcontrib>Ocak, S. B.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Trade &amp; Industry (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Trade &amp; Industry</collection><collection>Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>JOM (1989)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akay, D.</au><au>Gokmen, U.</au><au>Ocak, S. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ionizing Radiation Influence on Rubrene-Based Metal Polymer Semiconductors: Direct Information of Intrinsic Electrical Properties</atitle><jtitle>JOM (1989)</jtitle><stitle>JOM</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>72</volume><issue>6</issue><spage>2391</spage><epage>2397</epage><pages>2391-2397</pages><issn>1047-4838</issn><eissn>1543-1851</eissn><abstract>A rubrene-based nanostructure has been prepared by applying the evaporation method at room temperature. The 60 Co γ -ray irradiation effects on the electrical properties of the rubrene nanostructure were also examined by measuring current–voltage values. Standard, Norde, and Cheung methods have been used to obtain series resistance, interface states, barrier height, and an ideality factor before and after gamma rays. After obtaining the required information from these methods, they have been compared with each other before and after irradiation. The behavior of barrier height is dependent on the evaluated methods. Cheung, Standard, and Norde functions are different from each other owing to extraction from different regions of the plots. It has also been revealed that the ideality factor values for all the methods decrease with irradiation as do the electrical properties, such as series resistance evaluated using Norde and Cheung methods. These two methods give the same results. All the methods revealed that the series resistance values increase with irradiation. Further, these parameters are dependent on the strong functions of voltage.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11837-020-04156-x</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1047-4838
ispartof JOM (1989), 2020-06, Vol.72 (6), p.2391-2397
issn 1047-4838
1543-1851
language eng
recordid cdi_proquest_journals_2405915533
source Springer Nature - Complete Springer Journals
subjects Aluminum
Chemistry/Food Science
Defects
Earth Sciences
Electric fields
Electric potential
Electrical properties
Engineering
Environment
Evaluation
Gamma rays
Hydrocarbons
Ionizing radiation
Irradiation
Methods
Nanostructure
Physics
Polymers
Power plants
Radiation
Researchers
Room temperature
Semiconductors
Single crystals
Spectrum analysis
Studies
Technical Article
Voltage
title Ionizing Radiation Influence on Rubrene-Based Metal Polymer Semiconductors: Direct Information of Intrinsic Electrical Properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T21%3A41%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ionizing%20Radiation%20Influence%20on%20Rubrene-Based%20Metal%20Polymer%20Semiconductors:%20Direct%20Information%20of%20Intrinsic%20Electrical%20Properties&rft.jtitle=JOM%20(1989)&rft.au=Akay,%20D.&rft.date=2020-06-01&rft.volume=72&rft.issue=6&rft.spage=2391&rft.epage=2397&rft.pages=2391-2397&rft.issn=1047-4838&rft.eissn=1543-1851&rft_id=info:doi/10.1007/s11837-020-04156-x&rft_dat=%3Cproquest_cross%3E2405915533%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2405915533&rft_id=info:pmid/&rfr_iscdi=true