On Steane-enlargement of quantum codes from Cartesian product point sets

In this work, we study quantum error-correcting codes obtained by using Steane-enlargement. We apply this technique to certain codes defined from Cartesian products previously considered by Galindo et al. (IEEE Trans Inf Theory 64(4):2444–2459, 2018. https://doi.org/10.1109/TIT.2017.2755682 ). We gi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quantum information processing 2020-07, Vol.19 (7), Article 192
Hauptverfasser: Christensen, René Bødker, Geil, Olav
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page
container_title Quantum information processing
container_volume 19
creator Christensen, René Bødker
Geil, Olav
description In this work, we study quantum error-correcting codes obtained by using Steane-enlargement. We apply this technique to certain codes defined from Cartesian products previously considered by Galindo et al. (IEEE Trans Inf Theory 64(4):2444–2459, 2018. https://doi.org/10.1109/TIT.2017.2755682 ). We give bounds on the dimension increase obtained via enlargement, and additionally give an algorithm to compute the true increase. A number of examples of codes are provided, and their parameters are compared to relevant codes in the literature, which shows that the parameters of the enlarged codes are advantageous. Furthermore, comparison with the Gilbert–Varshamov bound for stabilizer quantum codes shows that several of the enlarged codes match or exceed the parameters promised by the bound.
doi_str_mv 10.1007/s11128-020-02691-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2405905249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2405905249</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-6d60059851eb43b22c5ae1154b5dcbc12b57c0d0dca58d67999f8cbdce89a9c73</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWKt_wFPAczST3exujlLUCoUe1HPIJrOlpZttk-zBf2_aFbx5GGZg3nszfITcA38EzuunCACiYVzwXJUCpi7IDGRdMCgKcXme86qW8prcxLjjXEDVVDOyXHv6kdB4ZOj3JmywR5_o0NHjaHwae2oHh5F2YejpwoSEcWs8PYTBjTbRw7DN6ogp3pKrzuwj3v32Ofl6fflcLNlq_fa-eF4xW4BKrHIV51I1ErAti1YIKw0CyLKVzrYWRCtryx131sjGVbVSqmts6yw2yihbF3PyMOXmF44jxqR3wxh8PqlFmZO5FKXKKjGpbBhiDNjpQ9j2Jnxr4PpETE_EdCamz8T0yVRMppjFfoPhL_of1w81Y26O</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2405905249</pqid></control><display><type>article</type><title>On Steane-enlargement of quantum codes from Cartesian product point sets</title><source>Springer Nature - Complete Springer Journals</source><creator>Christensen, René Bødker ; Geil, Olav</creator><creatorcontrib>Christensen, René Bødker ; Geil, Olav</creatorcontrib><description>In this work, we study quantum error-correcting codes obtained by using Steane-enlargement. We apply this technique to certain codes defined from Cartesian products previously considered by Galindo et al. (IEEE Trans Inf Theory 64(4):2444–2459, 2018. https://doi.org/10.1109/TIT.2017.2755682 ). We give bounds on the dimension increase obtained via enlargement, and additionally give an algorithm to compute the true increase. A number of examples of codes are provided, and their parameters are compared to relevant codes in the literature, which shows that the parameters of the enlarged codes are advantageous. Furthermore, comparison with the Gilbert–Varshamov bound for stabilizer quantum codes shows that several of the enlarged codes match or exceed the parameters promised by the bound.</description><identifier>ISSN: 1570-0755</identifier><identifier>EISSN: 1573-1332</identifier><identifier>DOI: 10.1007/s11128-020-02691-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Binary system ; Cartesian coordinates ; Codes ; Data Structures and Information Theory ; Enlargement ; Error analysis ; Error correcting codes ; Error correction ; Expansion ; Mathematical Physics ; Parameters ; Physics ; Physics and Astronomy ; Quantum Computing ; Quantum Information Technology ; Quantum Physics ; Spintronics</subject><ispartof>Quantum information processing, 2020-07, Vol.19 (7), Article 192</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-6d60059851eb43b22c5ae1154b5dcbc12b57c0d0dca58d67999f8cbdce89a9c73</citedby><cites>FETCH-LOGICAL-c319t-6d60059851eb43b22c5ae1154b5dcbc12b57c0d0dca58d67999f8cbdce89a9c73</cites><orcidid>0000-0002-9209-3739 ; 0000-0002-9666-3399</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11128-020-02691-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11128-020-02691-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Christensen, René Bødker</creatorcontrib><creatorcontrib>Geil, Olav</creatorcontrib><title>On Steane-enlargement of quantum codes from Cartesian product point sets</title><title>Quantum information processing</title><addtitle>Quantum Inf Process</addtitle><description>In this work, we study quantum error-correcting codes obtained by using Steane-enlargement. We apply this technique to certain codes defined from Cartesian products previously considered by Galindo et al. (IEEE Trans Inf Theory 64(4):2444–2459, 2018. https://doi.org/10.1109/TIT.2017.2755682 ). We give bounds on the dimension increase obtained via enlargement, and additionally give an algorithm to compute the true increase. A number of examples of codes are provided, and their parameters are compared to relevant codes in the literature, which shows that the parameters of the enlarged codes are advantageous. Furthermore, comparison with the Gilbert–Varshamov bound for stabilizer quantum codes shows that several of the enlarged codes match or exceed the parameters promised by the bound.</description><subject>Algorithms</subject><subject>Binary system</subject><subject>Cartesian coordinates</subject><subject>Codes</subject><subject>Data Structures and Information Theory</subject><subject>Enlargement</subject><subject>Error analysis</subject><subject>Error correcting codes</subject><subject>Error correction</subject><subject>Expansion</subject><subject>Mathematical Physics</subject><subject>Parameters</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Computing</subject><subject>Quantum Information Technology</subject><subject>Quantum Physics</subject><subject>Spintronics</subject><issn>1570-0755</issn><issn>1573-1332</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEQhYMoWKt_wFPAczST3exujlLUCoUe1HPIJrOlpZttk-zBf2_aFbx5GGZg3nszfITcA38EzuunCACiYVzwXJUCpi7IDGRdMCgKcXme86qW8prcxLjjXEDVVDOyXHv6kdB4ZOj3JmywR5_o0NHjaHwae2oHh5F2YejpwoSEcWs8PYTBjTbRw7DN6ogp3pKrzuwj3v32Ofl6fflcLNlq_fa-eF4xW4BKrHIV51I1ErAti1YIKw0CyLKVzrYWRCtryx131sjGVbVSqmts6yw2yihbF3PyMOXmF44jxqR3wxh8PqlFmZO5FKXKKjGpbBhiDNjpQ9j2Jnxr4PpETE_EdCamz8T0yVRMppjFfoPhL_of1w81Y26O</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Christensen, René Bødker</creator><creator>Geil, Olav</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9209-3739</orcidid><orcidid>https://orcid.org/0000-0002-9666-3399</orcidid></search><sort><creationdate>20200701</creationdate><title>On Steane-enlargement of quantum codes from Cartesian product point sets</title><author>Christensen, René Bødker ; Geil, Olav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-6d60059851eb43b22c5ae1154b5dcbc12b57c0d0dca58d67999f8cbdce89a9c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Binary system</topic><topic>Cartesian coordinates</topic><topic>Codes</topic><topic>Data Structures and Information Theory</topic><topic>Enlargement</topic><topic>Error analysis</topic><topic>Error correcting codes</topic><topic>Error correction</topic><topic>Expansion</topic><topic>Mathematical Physics</topic><topic>Parameters</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Computing</topic><topic>Quantum Information Technology</topic><topic>Quantum Physics</topic><topic>Spintronics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Christensen, René Bødker</creatorcontrib><creatorcontrib>Geil, Olav</creatorcontrib><collection>CrossRef</collection><jtitle>Quantum information processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Christensen, René Bødker</au><au>Geil, Olav</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Steane-enlargement of quantum codes from Cartesian product point sets</atitle><jtitle>Quantum information processing</jtitle><stitle>Quantum Inf Process</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>19</volume><issue>7</issue><artnum>192</artnum><issn>1570-0755</issn><eissn>1573-1332</eissn><abstract>In this work, we study quantum error-correcting codes obtained by using Steane-enlargement. We apply this technique to certain codes defined from Cartesian products previously considered by Galindo et al. (IEEE Trans Inf Theory 64(4):2444–2459, 2018. https://doi.org/10.1109/TIT.2017.2755682 ). We give bounds on the dimension increase obtained via enlargement, and additionally give an algorithm to compute the true increase. A number of examples of codes are provided, and their parameters are compared to relevant codes in the literature, which shows that the parameters of the enlarged codes are advantageous. Furthermore, comparison with the Gilbert–Varshamov bound for stabilizer quantum codes shows that several of the enlarged codes match or exceed the parameters promised by the bound.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11128-020-02691-9</doi><orcidid>https://orcid.org/0000-0002-9209-3739</orcidid><orcidid>https://orcid.org/0000-0002-9666-3399</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1570-0755
ispartof Quantum information processing, 2020-07, Vol.19 (7), Article 192
issn 1570-0755
1573-1332
language eng
recordid cdi_proquest_journals_2405905249
source Springer Nature - Complete Springer Journals
subjects Algorithms
Binary system
Cartesian coordinates
Codes
Data Structures and Information Theory
Enlargement
Error analysis
Error correcting codes
Error correction
Expansion
Mathematical Physics
Parameters
Physics
Physics and Astronomy
Quantum Computing
Quantum Information Technology
Quantum Physics
Spintronics
title On Steane-enlargement of quantum codes from Cartesian product point sets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T15%3A32%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Steane-enlargement%20of%20quantum%20codes%20from%20Cartesian%20product%20point%20sets&rft.jtitle=Quantum%20information%20processing&rft.au=Christensen,%20Ren%C3%A9%20B%C3%B8dker&rft.date=2020-07-01&rft.volume=19&rft.issue=7&rft.artnum=192&rft.issn=1570-0755&rft.eissn=1573-1332&rft_id=info:doi/10.1007/s11128-020-02691-9&rft_dat=%3Cproquest_cross%3E2405905249%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2405905249&rft_id=info:pmid/&rfr_iscdi=true