Triple-GAIL: A Multi-Modal Imitation Learning Framework with Generative Adversarial Nets

Generative adversarial imitation learning (GAIL) has shown promising results by taking advantage of generative adversarial nets, especially in the field of robot learning. However, the requirement of isolated single modal demonstrations limits the scalability of the approach to real world scenarios...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-05
Hauptverfasser: Cong Fei, Wang, Bin, Zhuang, Yuzheng, Zhang, Zongzhang, Hao, Jianye, Zhang, Hongbo, Ji, Xuewu, Liu, Wulong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Cong Fei
Wang, Bin
Zhuang, Yuzheng
Zhang, Zongzhang
Hao, Jianye
Zhang, Hongbo
Ji, Xuewu
Liu, Wulong
description Generative adversarial imitation learning (GAIL) has shown promising results by taking advantage of generative adversarial nets, especially in the field of robot learning. However, the requirement of isolated single modal demonstrations limits the scalability of the approach to real world scenarios such as autonomous vehicles' demand for a proper understanding of human drivers' behavior. In this paper, we propose a novel multi-modal GAIL framework, named Triple-GAIL, that is able to learn skill selection and imitation jointly from both expert demonstrations and continuously generated experiences with data augmentation purpose by introducing an auxiliary skill selector. We provide theoretical guarantees on the convergence to optima for both of the generator and the selector respectively. Experiments on real driver trajectories and real-time strategy game datasets demonstrate that Triple-GAIL can better fit multi-modal behaviors close to the demonstrators and outperforms state-of-the-art methods.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2405771094</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2405771094</sourcerecordid><originalsourceid>FETCH-proquest_journals_24057710943</originalsourceid><addsrcrecordid>eNqNi7EOgjAUABsTE4nyD02cSUoBUTdiBEnQicGNNOGpRWjxtcDvy-AHON1wdwvi8CDwvX3I-Yq4xjSMMb6LeRQFDrmXKPsWvCzJiyNN6HVorfSuuhYtzTtphZVa0QIEKqmeNEXRwaTxTSdpXzQDBTgnI9CkHgGNQDmPN7BmQ5YP0Rpwf1yTbXouTxevR_0ZwNiq0QOqWVU8ZFEc--wQBv9VX_TEQP8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2405771094</pqid></control><display><type>article</type><title>Triple-GAIL: A Multi-Modal Imitation Learning Framework with Generative Adversarial Nets</title><source>Free E- Journals</source><creator>Cong Fei ; Wang, Bin ; Zhuang, Yuzheng ; Zhang, Zongzhang ; Hao, Jianye ; Zhang, Hongbo ; Ji, Xuewu ; Liu, Wulong</creator><creatorcontrib>Cong Fei ; Wang, Bin ; Zhuang, Yuzheng ; Zhang, Zongzhang ; Hao, Jianye ; Zhang, Hongbo ; Ji, Xuewu ; Liu, Wulong</creatorcontrib><description>Generative adversarial imitation learning (GAIL) has shown promising results by taking advantage of generative adversarial nets, especially in the field of robot learning. However, the requirement of isolated single modal demonstrations limits the scalability of the approach to real world scenarios such as autonomous vehicles' demand for a proper understanding of human drivers' behavior. In this paper, we propose a novel multi-modal GAIL framework, named Triple-GAIL, that is able to learn skill selection and imitation jointly from both expert demonstrations and continuously generated experiences with data augmentation purpose by introducing an auxiliary skill selector. We provide theoretical guarantees on the convergence to optima for both of the generator and the selector respectively. Experiments on real driver trajectories and real-time strategy game datasets demonstrate that Triple-GAIL can better fit multi-modal behaviors close to the demonstrators and outperforms state-of-the-art methods.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Game theory ; Robot learning</subject><ispartof>arXiv.org, 2020-05</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Cong Fei</creatorcontrib><creatorcontrib>Wang, Bin</creatorcontrib><creatorcontrib>Zhuang, Yuzheng</creatorcontrib><creatorcontrib>Zhang, Zongzhang</creatorcontrib><creatorcontrib>Hao, Jianye</creatorcontrib><creatorcontrib>Zhang, Hongbo</creatorcontrib><creatorcontrib>Ji, Xuewu</creatorcontrib><creatorcontrib>Liu, Wulong</creatorcontrib><title>Triple-GAIL: A Multi-Modal Imitation Learning Framework with Generative Adversarial Nets</title><title>arXiv.org</title><description>Generative adversarial imitation learning (GAIL) has shown promising results by taking advantage of generative adversarial nets, especially in the field of robot learning. However, the requirement of isolated single modal demonstrations limits the scalability of the approach to real world scenarios such as autonomous vehicles' demand for a proper understanding of human drivers' behavior. In this paper, we propose a novel multi-modal GAIL framework, named Triple-GAIL, that is able to learn skill selection and imitation jointly from both expert demonstrations and continuously generated experiences with data augmentation purpose by introducing an auxiliary skill selector. We provide theoretical guarantees on the convergence to optima for both of the generator and the selector respectively. Experiments on real driver trajectories and real-time strategy game datasets demonstrate that Triple-GAIL can better fit multi-modal behaviors close to the demonstrators and outperforms state-of-the-art methods.</description><subject>Game theory</subject><subject>Robot learning</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi7EOgjAUABsTE4nyD02cSUoBUTdiBEnQicGNNOGpRWjxtcDvy-AHON1wdwvi8CDwvX3I-Yq4xjSMMb6LeRQFDrmXKPsWvCzJiyNN6HVorfSuuhYtzTtphZVa0QIEKqmeNEXRwaTxTSdpXzQDBTgnI9CkHgGNQDmPN7BmQ5YP0Rpwf1yTbXouTxevR_0ZwNiq0QOqWVU8ZFEc--wQBv9VX_TEQP8</recordid><startdate>20200522</startdate><enddate>20200522</enddate><creator>Cong Fei</creator><creator>Wang, Bin</creator><creator>Zhuang, Yuzheng</creator><creator>Zhang, Zongzhang</creator><creator>Hao, Jianye</creator><creator>Zhang, Hongbo</creator><creator>Ji, Xuewu</creator><creator>Liu, Wulong</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200522</creationdate><title>Triple-GAIL: A Multi-Modal Imitation Learning Framework with Generative Adversarial Nets</title><author>Cong Fei ; Wang, Bin ; Zhuang, Yuzheng ; Zhang, Zongzhang ; Hao, Jianye ; Zhang, Hongbo ; Ji, Xuewu ; Liu, Wulong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24057710943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Game theory</topic><topic>Robot learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Cong Fei</creatorcontrib><creatorcontrib>Wang, Bin</creatorcontrib><creatorcontrib>Zhuang, Yuzheng</creatorcontrib><creatorcontrib>Zhang, Zongzhang</creatorcontrib><creatorcontrib>Hao, Jianye</creatorcontrib><creatorcontrib>Zhang, Hongbo</creatorcontrib><creatorcontrib>Ji, Xuewu</creatorcontrib><creatorcontrib>Liu, Wulong</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cong Fei</au><au>Wang, Bin</au><au>Zhuang, Yuzheng</au><au>Zhang, Zongzhang</au><au>Hao, Jianye</au><au>Zhang, Hongbo</au><au>Ji, Xuewu</au><au>Liu, Wulong</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Triple-GAIL: A Multi-Modal Imitation Learning Framework with Generative Adversarial Nets</atitle><jtitle>arXiv.org</jtitle><date>2020-05-22</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>Generative adversarial imitation learning (GAIL) has shown promising results by taking advantage of generative adversarial nets, especially in the field of robot learning. However, the requirement of isolated single modal demonstrations limits the scalability of the approach to real world scenarios such as autonomous vehicles' demand for a proper understanding of human drivers' behavior. In this paper, we propose a novel multi-modal GAIL framework, named Triple-GAIL, that is able to learn skill selection and imitation jointly from both expert demonstrations and continuously generated experiences with data augmentation purpose by introducing an auxiliary skill selector. We provide theoretical guarantees on the convergence to optima for both of the generator and the selector respectively. Experiments on real driver trajectories and real-time strategy game datasets demonstrate that Triple-GAIL can better fit multi-modal behaviors close to the demonstrators and outperforms state-of-the-art methods.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2405771094
source Free E- Journals
subjects Game theory
Robot learning
title Triple-GAIL: A Multi-Modal Imitation Learning Framework with Generative Adversarial Nets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T14%3A39%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Triple-GAIL:%20A%20Multi-Modal%20Imitation%20Learning%20Framework%20with%20Generative%20Adversarial%20Nets&rft.jtitle=arXiv.org&rft.au=Cong%20Fei&rft.date=2020-05-22&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2405771094%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2405771094&rft_id=info:pmid/&rfr_iscdi=true