Computation of effectiveness factor for methanol steam reforming over Cu/ZnO/Al2O3 catalyst pellet

A mathematical model was developed for a diffusion–reaction process in a spherical catalyst pellet contained in a heterogeneous packed bed reactor. The model developed was solved to predict the effectiveness factor and also to perform sensitivity analysis for steam reforming of methanol on Cu/ZnO/Al...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied petrochemical research 2020-04, Vol.10 (1), p.35-47
Hauptverfasser: Olatunde, Abayomi O., Olafadehan, Olaosebikan A., Usman, Mohammed A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 47
container_issue 1
container_start_page 35
container_title Applied petrochemical research
container_volume 10
creator Olatunde, Abayomi O.
Olafadehan, Olaosebikan A.
Usman, Mohammed A.
description A mathematical model was developed for a diffusion–reaction process in a spherical catalyst pellet contained in a heterogeneous packed bed reactor. The model developed was solved to predict the effectiveness factor and also to perform sensitivity analysis for steam reforming of methanol on Cu/ZnO/Al 2 O 3 catalyst a source of hydrogen fuel. The method of orthogonal collocation was used to solve the resulting differential equation. At temperature below 473 K the effect on intra-particle diffusion limitation is reduced to the minimum indicated by the effectiveness factor being almost equal to one but as the temperature increases above 473 K there is considerable increase in the diffusion limitation effect. The effects of thermal conductivity, diffusion coefficient, catalyst size and surface temperature on effectiveness factor for the reaction process were also considered. Result indicates that catalyst size of 1.623 × 10 - 4  m eliminates the effect of intra-particle diffusion resistance in the pellet. The variation of effectiveness factor with Thiele modulus, showing the asymptotic values, using power law and Langmuir–Hinshelwood–Hougen–Watson (LHHW) kinetics, was predicted. The two reaction kinetics had almost the same magnitude of effectiveness factor at different Thiele modulus which indicates that they can adequately predict the reaction process.
doi_str_mv 10.1007/s13203-020-00244-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2405451737</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2405451737</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-9438ce33395ba8c83f8473cc059b55f697b3feedfe4dd6132014f8b90f2461013</originalsourceid><addsrcrecordid>eNp9UMtqwzAQFKWFhjQ_0JOgZzd6xvYxmL4gkEt76UXIyip1sC1XUhLy91XqQnvqwrLLMjPLDEK3lNxTQvJ5oJwRnhFGMkKYENnxAk0YLUkmJZOXf_ZrNAthR1LJvCzzYoLqynXDPurYuB47i8FaMLE5QA8hYKtNdB7b1B3ED927FocIusMe0rFr-i12B_C42s_f-_V82bI1x0ZH3Z5CxAO0LcQbdGV1G2D2M6fo7fHhtXrOVuunl2q5ygznJGal4IUBznkpa12YgttC5NwYIstaSrso85pbgI0FsdkszpapsEVdEsvEghLKp-hu1B28-9xDiGrn9r5PLxUTRApJc54nFBtRxrsQkg01-KbT_qQoUec41RinSnGq7zjVMZH4SAoJ3G_B_0r_w_oC0tp4RA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2405451737</pqid></control><display><type>article</type><title>Computation of effectiveness factor for methanol steam reforming over Cu/ZnO/Al2O3 catalyst pellet</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Olatunde, Abayomi O. ; Olafadehan, Olaosebikan A. ; Usman, Mohammed A.</creator><creatorcontrib>Olatunde, Abayomi O. ; Olafadehan, Olaosebikan A. ; Usman, Mohammed A.</creatorcontrib><description>A mathematical model was developed for a diffusion–reaction process in a spherical catalyst pellet contained in a heterogeneous packed bed reactor. The model developed was solved to predict the effectiveness factor and also to perform sensitivity analysis for steam reforming of methanol on Cu/ZnO/Al 2 O 3 catalyst a source of hydrogen fuel. The method of orthogonal collocation was used to solve the resulting differential equation. At temperature below 473 K the effect on intra-particle diffusion limitation is reduced to the minimum indicated by the effectiveness factor being almost equal to one but as the temperature increases above 473 K there is considerable increase in the diffusion limitation effect. The effects of thermal conductivity, diffusion coefficient, catalyst size and surface temperature on effectiveness factor for the reaction process were also considered. Result indicates that catalyst size of 1.623 × 10 - 4  m eliminates the effect of intra-particle diffusion resistance in the pellet. The variation of effectiveness factor with Thiele modulus, showing the asymptotic values, using power law and Langmuir–Hinshelwood–Hougen–Watson (LHHW) kinetics, was predicted. The two reaction kinetics had almost the same magnitude of effectiveness factor at different Thiele modulus which indicates that they can adequately predict the reaction process.</description><identifier>ISSN: 2190-5525</identifier><identifier>EISSN: 2190-5525</identifier><identifier>DOI: 10.1007/s13203-020-00244-w</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Aluminum oxide ; Catalysis ; Catalysts ; Chemistry ; Chemistry and Materials Science ; Collocation methods ; Differential equations ; Diffusion coefficient ; Diffusion effects ; Energy Systems ; Hydrogen fuels ; Industrial Chemistry/Chemical Engineering ; Kinetics ; Mathematical analysis ; Mathematical models ; Methanol ; Nanochemistry ; Nanotechnology and Microengineering ; Nuclear fuels ; Original Article ; Packed beds ; Particle diffusion ; Reaction kinetics ; Reforming ; Sensitivity analysis ; Steam ; Thermal conductivity ; Zinc oxide</subject><ispartof>Applied petrochemical research, 2020-04, Vol.10 (1), p.35-47</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-9438ce33395ba8c83f8473cc059b55f697b3feedfe4dd6132014f8b90f2461013</citedby><cites>FETCH-LOGICAL-c330t-9438ce33395ba8c83f8473cc059b55f697b3feedfe4dd6132014f8b90f2461013</cites><orcidid>0000-0002-8754-390X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13203-020-00244-w$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1007/s13203-020-00244-w$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41096,42165,51551</link.rule.ids></links><search><creatorcontrib>Olatunde, Abayomi O.</creatorcontrib><creatorcontrib>Olafadehan, Olaosebikan A.</creatorcontrib><creatorcontrib>Usman, Mohammed A.</creatorcontrib><title>Computation of effectiveness factor for methanol steam reforming over Cu/ZnO/Al2O3 catalyst pellet</title><title>Applied petrochemical research</title><addtitle>Appl Petrochem Res</addtitle><description>A mathematical model was developed for a diffusion–reaction process in a spherical catalyst pellet contained in a heterogeneous packed bed reactor. The model developed was solved to predict the effectiveness factor and also to perform sensitivity analysis for steam reforming of methanol on Cu/ZnO/Al 2 O 3 catalyst a source of hydrogen fuel. The method of orthogonal collocation was used to solve the resulting differential equation. At temperature below 473 K the effect on intra-particle diffusion limitation is reduced to the minimum indicated by the effectiveness factor being almost equal to one but as the temperature increases above 473 K there is considerable increase in the diffusion limitation effect. The effects of thermal conductivity, diffusion coefficient, catalyst size and surface temperature on effectiveness factor for the reaction process were also considered. Result indicates that catalyst size of 1.623 × 10 - 4  m eliminates the effect of intra-particle diffusion resistance in the pellet. The variation of effectiveness factor with Thiele modulus, showing the asymptotic values, using power law and Langmuir–Hinshelwood–Hougen–Watson (LHHW) kinetics, was predicted. The two reaction kinetics had almost the same magnitude of effectiveness factor at different Thiele modulus which indicates that they can adequately predict the reaction process.</description><subject>Aluminum oxide</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Collocation methods</subject><subject>Differential equations</subject><subject>Diffusion coefficient</subject><subject>Diffusion effects</subject><subject>Energy Systems</subject><subject>Hydrogen fuels</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Kinetics</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Methanol</subject><subject>Nanochemistry</subject><subject>Nanotechnology and Microengineering</subject><subject>Nuclear fuels</subject><subject>Original Article</subject><subject>Packed beds</subject><subject>Particle diffusion</subject><subject>Reaction kinetics</subject><subject>Reforming</subject><subject>Sensitivity analysis</subject><subject>Steam</subject><subject>Thermal conductivity</subject><subject>Zinc oxide</subject><issn>2190-5525</issn><issn>2190-5525</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9UMtqwzAQFKWFhjQ_0JOgZzd6xvYxmL4gkEt76UXIyip1sC1XUhLy91XqQnvqwrLLMjPLDEK3lNxTQvJ5oJwRnhFGMkKYENnxAk0YLUkmJZOXf_ZrNAthR1LJvCzzYoLqynXDPurYuB47i8FaMLE5QA8hYKtNdB7b1B3ED927FocIusMe0rFr-i12B_C42s_f-_V82bI1x0ZH3Z5CxAO0LcQbdGV1G2D2M6fo7fHhtXrOVuunl2q5ygznJGal4IUBznkpa12YgttC5NwYIstaSrso85pbgI0FsdkszpapsEVdEsvEghLKp-hu1B28-9xDiGrn9r5PLxUTRApJc54nFBtRxrsQkg01-KbT_qQoUec41RinSnGq7zjVMZH4SAoJ3G_B_0r_w_oC0tp4RA</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Olatunde, Abayomi O.</creator><creator>Olafadehan, Olaosebikan A.</creator><creator>Usman, Mohammed A.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-8754-390X</orcidid></search><sort><creationdate>20200401</creationdate><title>Computation of effectiveness factor for methanol steam reforming over Cu/ZnO/Al2O3 catalyst pellet</title><author>Olatunde, Abayomi O. ; Olafadehan, Olaosebikan A. ; Usman, Mohammed A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-9438ce33395ba8c83f8473cc059b55f697b3feedfe4dd6132014f8b90f2461013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aluminum oxide</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Collocation methods</topic><topic>Differential equations</topic><topic>Diffusion coefficient</topic><topic>Diffusion effects</topic><topic>Energy Systems</topic><topic>Hydrogen fuels</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Kinetics</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Methanol</topic><topic>Nanochemistry</topic><topic>Nanotechnology and Microengineering</topic><topic>Nuclear fuels</topic><topic>Original Article</topic><topic>Packed beds</topic><topic>Particle diffusion</topic><topic>Reaction kinetics</topic><topic>Reforming</topic><topic>Sensitivity analysis</topic><topic>Steam</topic><topic>Thermal conductivity</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Olatunde, Abayomi O.</creatorcontrib><creatorcontrib>Olafadehan, Olaosebikan A.</creatorcontrib><creatorcontrib>Usman, Mohammed A.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Applied petrochemical research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Olatunde, Abayomi O.</au><au>Olafadehan, Olaosebikan A.</au><au>Usman, Mohammed A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computation of effectiveness factor for methanol steam reforming over Cu/ZnO/Al2O3 catalyst pellet</atitle><jtitle>Applied petrochemical research</jtitle><stitle>Appl Petrochem Res</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>35</spage><epage>47</epage><pages>35-47</pages><issn>2190-5525</issn><eissn>2190-5525</eissn><abstract>A mathematical model was developed for a diffusion–reaction process in a spherical catalyst pellet contained in a heterogeneous packed bed reactor. The model developed was solved to predict the effectiveness factor and also to perform sensitivity analysis for steam reforming of methanol on Cu/ZnO/Al 2 O 3 catalyst a source of hydrogen fuel. The method of orthogonal collocation was used to solve the resulting differential equation. At temperature below 473 K the effect on intra-particle diffusion limitation is reduced to the minimum indicated by the effectiveness factor being almost equal to one but as the temperature increases above 473 K there is considerable increase in the diffusion limitation effect. The effects of thermal conductivity, diffusion coefficient, catalyst size and surface temperature on effectiveness factor for the reaction process were also considered. Result indicates that catalyst size of 1.623 × 10 - 4  m eliminates the effect of intra-particle diffusion resistance in the pellet. The variation of effectiveness factor with Thiele modulus, showing the asymptotic values, using power law and Langmuir–Hinshelwood–Hougen–Watson (LHHW) kinetics, was predicted. The two reaction kinetics had almost the same magnitude of effectiveness factor at different Thiele modulus which indicates that they can adequately predict the reaction process.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s13203-020-00244-w</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8754-390X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2190-5525
ispartof Applied petrochemical research, 2020-04, Vol.10 (1), p.35-47
issn 2190-5525
2190-5525
language eng
recordid cdi_proquest_journals_2405451737
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals
subjects Aluminum oxide
Catalysis
Catalysts
Chemistry
Chemistry and Materials Science
Collocation methods
Differential equations
Diffusion coefficient
Diffusion effects
Energy Systems
Hydrogen fuels
Industrial Chemistry/Chemical Engineering
Kinetics
Mathematical analysis
Mathematical models
Methanol
Nanochemistry
Nanotechnology and Microengineering
Nuclear fuels
Original Article
Packed beds
Particle diffusion
Reaction kinetics
Reforming
Sensitivity analysis
Steam
Thermal conductivity
Zinc oxide
title Computation of effectiveness factor for methanol steam reforming over Cu/ZnO/Al2O3 catalyst pellet
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T21%3A03%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computation%20of%20effectiveness%20factor%20for%20methanol%20steam%20reforming%20over%20Cu/ZnO/Al2O3%20catalyst%20pellet&rft.jtitle=Applied%20petrochemical%20research&rft.au=Olatunde,%20Abayomi%20O.&rft.date=2020-04-01&rft.volume=10&rft.issue=1&rft.spage=35&rft.epage=47&rft.pages=35-47&rft.issn=2190-5525&rft.eissn=2190-5525&rft_id=info:doi/10.1007/s13203-020-00244-w&rft_dat=%3Cproquest_cross%3E2405451737%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2405451737&rft_id=info:pmid/&rfr_iscdi=true