Thermal Stratification Effects on Turbulence and Dispersion in Internal and External Boundary Layers

A synthetic-turbulence and temperature-fluctuation-generation method is developed and embedded in large-eddy simulations to investigate the effects of weak stable stratification (i.e. Richardson number R i ≤ 1 ) on turbulence and dispersion following a simulated rural-to-urban transition. The modell...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Boundary-layer meteorology 2020-07, Vol.176 (1), p.61-83
Hauptverfasser: Sessa, Vincenzo, Xie, Zheng-Tong, Herring, Steven
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 83
container_issue 1
container_start_page 61
container_title Boundary-layer meteorology
container_volume 176
creator Sessa, Vincenzo
Xie, Zheng-Tong
Herring, Steven
description A synthetic-turbulence and temperature-fluctuation-generation method is developed and embedded in large-eddy simulations to investigate the effects of weak stable stratification (i.e. Richardson number R i ≤ 1 ) on turbulence and dispersion following a simulated rural-to-urban transition. The modelling approach is validated by comparing predictions of mean velocity, turbulent stresses, and point-source dispersion against data from a wind-tunnel experiment that simulates a stable atmospheric boundary layer ( R i = 0.21 ) approaching a regular array of uniform rectangular blocks. The depth of the internal boundary layer (IBL) that develops from the leading edge of the block array is determined using the wall-normal turbulent stress method proposed by Sessa et al. (J Wind Eng Ind Aerodyn 182:189–291, 2018). This shows that the depth and growth rate of the IBL are sensitive to the thermal stability and the turbulence kinetic energy (TKE) prescribed at the inlet, such that the IBL depth reduces as the TKE of the inflow is reduced while maintaining the same Ri , or as the Ri is increased while maintaining the same inflow TKE. When a ground level line source is introduced it is found that increasing Ri evidently reduces the vertical scalar fluxes at the canopy height, while increasing the mean concentrations within the streets. Furthermore, as with IBL development it is found that for a given value of Ri the effect of stratification becomes more pronounced as the inflow level of TKE is reduced, affecting scalar fluxes within and above the canopy, and volume-averaged mean concentrations within the streets.
doi_str_mv 10.1007/s10546-020-00524-x
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2405451736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A624634606</galeid><sourcerecordid>A624634606</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-137a1c1b32076529c328a20b4c1351a26a63f42072f94e107e3e7f3f8e87e57d3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC562Tj03aY61VCwUP1nNIs5O6pc3WZBfaf2_WLXiTwCQz8z5h5iXknsKIAqjHSKEQMgcGOUDBRH68IANaKJ5TodglGQCAzMecimtyE-M2pYoWMCDl6gvD3uyyjyaYpnKVTbH22dw5tE3M0nPVhnW7Q28xM77Mnqt4wBA7UeWzhW8w-MR3rfnxnDzVrS9NOGVLc0raW3LlzC7i3fkeks-X-Wr2li_fXxez6TK3AliTU64MtXTNGShZsInlbGwYrIWlvKCGSSO5E6nJ3EQgBYUcleNujGOFhSr5kDz0_x5C_d1ibPS2bruBomYiGVRQxWVSjXrVxuxQV97VaXWbTon7ytYeXZXqU8mE5EJCB7AesKGOMaDTh1Dt03qagu7s1739Otmvf-3XxwTxHopJ7DcY_mb5h_oBdQCHtw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2405451736</pqid></control><display><type>article</type><title>Thermal Stratification Effects on Turbulence and Dispersion in Internal and External Boundary Layers</title><source>Springer Nature - Complete Springer Journals</source><creator>Sessa, Vincenzo ; Xie, Zheng-Tong ; Herring, Steven</creator><creatorcontrib>Sessa, Vincenzo ; Xie, Zheng-Tong ; Herring, Steven</creatorcontrib><description>A synthetic-turbulence and temperature-fluctuation-generation method is developed and embedded in large-eddy simulations to investigate the effects of weak stable stratification (i.e. Richardson number R i ≤ 1 ) on turbulence and dispersion following a simulated rural-to-urban transition. The modelling approach is validated by comparing predictions of mean velocity, turbulent stresses, and point-source dispersion against data from a wind-tunnel experiment that simulates a stable atmospheric boundary layer ( R i = 0.21 ) approaching a regular array of uniform rectangular blocks. The depth of the internal boundary layer (IBL) that develops from the leading edge of the block array is determined using the wall-normal turbulent stress method proposed by Sessa et al. (J Wind Eng Ind Aerodyn 182:189–291, 2018). This shows that the depth and growth rate of the IBL are sensitive to the thermal stability and the turbulence kinetic energy (TKE) prescribed at the inlet, such that the IBL depth reduces as the TKE of the inflow is reduced while maintaining the same Ri , or as the Ri is increased while maintaining the same inflow TKE. When a ground level line source is introduced it is found that increasing Ri evidently reduces the vertical scalar fluxes at the canopy height, while increasing the mean concentrations within the streets. Furthermore, as with IBL development it is found that for a given value of Ri the effect of stratification becomes more pronounced as the inflow level of TKE is reduced, affecting scalar fluxes within and above the canopy, and volume-averaged mean concentrations within the streets.</description><identifier>ISSN: 0006-8314</identifier><identifier>EISSN: 1573-1472</identifier><identifier>DOI: 10.1007/s10546-020-00524-x</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Aerodynamics ; Analysis ; Arrays ; Atmospheric boundary layer ; Atmospheric models ; Atmospheric Protection/Air Quality Control/Air Pollution ; Atmospheric Sciences ; Boundary layers ; Canopies ; Canopy ; Computer simulation ; Depth ; Dispersion ; Earth and Environmental Science ; Earth Sciences ; Fluxes ; Ground level ; Growth rate ; Inflow ; Internal boundary layer ; Kinetic energy ; Large eddy simulation ; Large eddy simulations ; Meteorology ; Oceanic eddies ; Planetary boundary layer ; Research Article ; Richardson number ; Streets ; Thermal stability ; Thermal stratification ; Turbulence ; Water pollution ; Wind ; Wind tunnel testing ; Wind tunnels</subject><ispartof>Boundary-layer meteorology, 2020-07, Vol.176 (1), p.61-83</ispartof><rights>The Author(s) 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>The Author(s) 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-137a1c1b32076529c328a20b4c1351a26a63f42072f94e107e3e7f3f8e87e57d3</citedby><cites>FETCH-LOGICAL-c402t-137a1c1b32076529c328a20b4c1351a26a63f42072f94e107e3e7f3f8e87e57d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10546-020-00524-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10546-020-00524-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Sessa, Vincenzo</creatorcontrib><creatorcontrib>Xie, Zheng-Tong</creatorcontrib><creatorcontrib>Herring, Steven</creatorcontrib><title>Thermal Stratification Effects on Turbulence and Dispersion in Internal and External Boundary Layers</title><title>Boundary-layer meteorology</title><addtitle>Boundary-Layer Meteorol</addtitle><description>A synthetic-turbulence and temperature-fluctuation-generation method is developed and embedded in large-eddy simulations to investigate the effects of weak stable stratification (i.e. Richardson number R i ≤ 1 ) on turbulence and dispersion following a simulated rural-to-urban transition. The modelling approach is validated by comparing predictions of mean velocity, turbulent stresses, and point-source dispersion against data from a wind-tunnel experiment that simulates a stable atmospheric boundary layer ( R i = 0.21 ) approaching a regular array of uniform rectangular blocks. The depth of the internal boundary layer (IBL) that develops from the leading edge of the block array is determined using the wall-normal turbulent stress method proposed by Sessa et al. (J Wind Eng Ind Aerodyn 182:189–291, 2018). This shows that the depth and growth rate of the IBL are sensitive to the thermal stability and the turbulence kinetic energy (TKE) prescribed at the inlet, such that the IBL depth reduces as the TKE of the inflow is reduced while maintaining the same Ri , or as the Ri is increased while maintaining the same inflow TKE. When a ground level line source is introduced it is found that increasing Ri evidently reduces the vertical scalar fluxes at the canopy height, while increasing the mean concentrations within the streets. Furthermore, as with IBL development it is found that for a given value of Ri the effect of stratification becomes more pronounced as the inflow level of TKE is reduced, affecting scalar fluxes within and above the canopy, and volume-averaged mean concentrations within the streets.</description><subject>Aerodynamics</subject><subject>Analysis</subject><subject>Arrays</subject><subject>Atmospheric boundary layer</subject><subject>Atmospheric models</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Atmospheric Sciences</subject><subject>Boundary layers</subject><subject>Canopies</subject><subject>Canopy</subject><subject>Computer simulation</subject><subject>Depth</subject><subject>Dispersion</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Fluxes</subject><subject>Ground level</subject><subject>Growth rate</subject><subject>Inflow</subject><subject>Internal boundary layer</subject><subject>Kinetic energy</subject><subject>Large eddy simulation</subject><subject>Large eddy simulations</subject><subject>Meteorology</subject><subject>Oceanic eddies</subject><subject>Planetary boundary layer</subject><subject>Research Article</subject><subject>Richardson number</subject><subject>Streets</subject><subject>Thermal stability</subject><subject>Thermal stratification</subject><subject>Turbulence</subject><subject>Water pollution</subject><subject>Wind</subject><subject>Wind tunnel testing</subject><subject>Wind tunnels</subject><issn>0006-8314</issn><issn>1573-1472</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wNOC562Tj03aY61VCwUP1nNIs5O6pc3WZBfaf2_WLXiTwCQz8z5h5iXknsKIAqjHSKEQMgcGOUDBRH68IANaKJ5TodglGQCAzMecimtyE-M2pYoWMCDl6gvD3uyyjyaYpnKVTbH22dw5tE3M0nPVhnW7Q28xM77Mnqt4wBA7UeWzhW8w-MR3rfnxnDzVrS9NOGVLc0raW3LlzC7i3fkeks-X-Wr2li_fXxez6TK3AliTU64MtXTNGShZsInlbGwYrIWlvKCGSSO5E6nJ3EQgBYUcleNujGOFhSr5kDz0_x5C_d1ibPS2bruBomYiGVRQxWVSjXrVxuxQV97VaXWbTon7ytYeXZXqU8mE5EJCB7AesKGOMaDTh1Dt03qagu7s1739Otmvf-3XxwTxHopJ7DcY_mb5h_oBdQCHtw</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Sessa, Vincenzo</creator><creator>Xie, Zheng-Tong</creator><creator>Herring, Steven</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20200701</creationdate><title>Thermal Stratification Effects on Turbulence and Dispersion in Internal and External Boundary Layers</title><author>Sessa, Vincenzo ; Xie, Zheng-Tong ; Herring, Steven</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-137a1c1b32076529c328a20b4c1351a26a63f42072f94e107e3e7f3f8e87e57d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aerodynamics</topic><topic>Analysis</topic><topic>Arrays</topic><topic>Atmospheric boundary layer</topic><topic>Atmospheric models</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Atmospheric Sciences</topic><topic>Boundary layers</topic><topic>Canopies</topic><topic>Canopy</topic><topic>Computer simulation</topic><topic>Depth</topic><topic>Dispersion</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Fluxes</topic><topic>Ground level</topic><topic>Growth rate</topic><topic>Inflow</topic><topic>Internal boundary layer</topic><topic>Kinetic energy</topic><topic>Large eddy simulation</topic><topic>Large eddy simulations</topic><topic>Meteorology</topic><topic>Oceanic eddies</topic><topic>Planetary boundary layer</topic><topic>Research Article</topic><topic>Richardson number</topic><topic>Streets</topic><topic>Thermal stability</topic><topic>Thermal stratification</topic><topic>Turbulence</topic><topic>Water pollution</topic><topic>Wind</topic><topic>Wind tunnel testing</topic><topic>Wind tunnels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sessa, Vincenzo</creatorcontrib><creatorcontrib>Xie, Zheng-Tong</creatorcontrib><creatorcontrib>Herring, Steven</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Boundary-layer meteorology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sessa, Vincenzo</au><au>Xie, Zheng-Tong</au><au>Herring, Steven</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal Stratification Effects on Turbulence and Dispersion in Internal and External Boundary Layers</atitle><jtitle>Boundary-layer meteorology</jtitle><stitle>Boundary-Layer Meteorol</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>176</volume><issue>1</issue><spage>61</spage><epage>83</epage><pages>61-83</pages><issn>0006-8314</issn><eissn>1573-1472</eissn><abstract>A synthetic-turbulence and temperature-fluctuation-generation method is developed and embedded in large-eddy simulations to investigate the effects of weak stable stratification (i.e. Richardson number R i ≤ 1 ) on turbulence and dispersion following a simulated rural-to-urban transition. The modelling approach is validated by comparing predictions of mean velocity, turbulent stresses, and point-source dispersion against data from a wind-tunnel experiment that simulates a stable atmospheric boundary layer ( R i = 0.21 ) approaching a regular array of uniform rectangular blocks. The depth of the internal boundary layer (IBL) that develops from the leading edge of the block array is determined using the wall-normal turbulent stress method proposed by Sessa et al. (J Wind Eng Ind Aerodyn 182:189–291, 2018). This shows that the depth and growth rate of the IBL are sensitive to the thermal stability and the turbulence kinetic energy (TKE) prescribed at the inlet, such that the IBL depth reduces as the TKE of the inflow is reduced while maintaining the same Ri , or as the Ri is increased while maintaining the same inflow TKE. When a ground level line source is introduced it is found that increasing Ri evidently reduces the vertical scalar fluxes at the canopy height, while increasing the mean concentrations within the streets. Furthermore, as with IBL development it is found that for a given value of Ri the effect of stratification becomes more pronounced as the inflow level of TKE is reduced, affecting scalar fluxes within and above the canopy, and volume-averaged mean concentrations within the streets.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10546-020-00524-x</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-8314
ispartof Boundary-layer meteorology, 2020-07, Vol.176 (1), p.61-83
issn 0006-8314
1573-1472
language eng
recordid cdi_proquest_journals_2405451736
source Springer Nature - Complete Springer Journals
subjects Aerodynamics
Analysis
Arrays
Atmospheric boundary layer
Atmospheric models
Atmospheric Protection/Air Quality Control/Air Pollution
Atmospheric Sciences
Boundary layers
Canopies
Canopy
Computer simulation
Depth
Dispersion
Earth and Environmental Science
Earth Sciences
Fluxes
Ground level
Growth rate
Inflow
Internal boundary layer
Kinetic energy
Large eddy simulation
Large eddy simulations
Meteorology
Oceanic eddies
Planetary boundary layer
Research Article
Richardson number
Streets
Thermal stability
Thermal stratification
Turbulence
Water pollution
Wind
Wind tunnel testing
Wind tunnels
title Thermal Stratification Effects on Turbulence and Dispersion in Internal and External Boundary Layers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T10%3A13%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20Stratification%20Effects%20on%20Turbulence%20and%20Dispersion%20in%20Internal%20and%20External%20Boundary%20Layers&rft.jtitle=Boundary-layer%20meteorology&rft.au=Sessa,%20Vincenzo&rft.date=2020-07-01&rft.volume=176&rft.issue=1&rft.spage=61&rft.epage=83&rft.pages=61-83&rft.issn=0006-8314&rft.eissn=1573-1472&rft_id=info:doi/10.1007/s10546-020-00524-x&rft_dat=%3Cgale_proqu%3EA624634606%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2405451736&rft_id=info:pmid/&rft_galeid=A624634606&rfr_iscdi=true