High accuracy correspondence field estimation via MST based patch matching

This paper presents an effective framework for correspondence field estimation. The core idea is to construct pixel-level and superpixel-level patch matching to achieve high accuracy estimation as well as fast speed computation. To this end, a hybrid edge-preserving supported weighting approach is f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications 2020-05, Vol.79 (19-20), p.13291-13309
Hauptverfasser: Zhang, Feihu, Xu, Shibiao, Zhang, Xiaopeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13309
container_issue 19-20
container_start_page 13291
container_title Multimedia tools and applications
container_volume 79
creator Zhang, Feihu
Xu, Shibiao
Zhang, Xiaopeng
description This paper presents an effective framework for correspondence field estimation. The core idea is to construct pixel-level and superpixel-level patch matching to achieve high accuracy estimation as well as fast speed computation. To this end, a hybrid edge-preserving supported weighting approach is first developed, which contributes to better performance on the pixel level, especially on those in the regions of fine structures. Then, a local Minimum Spanning Tree (MST) is constructed to describe regions and develop the adaptive smooth penalty weights, so that the over-patching in large textureless regions can be effectively avoided. In addition, the MST is further extended to handle occlusions in way of edge preserving strategy. Finally, all the above treatments are collected into an optimization model where the objective function is developed in terms of Markov Random Filed (MRF). In computation, a fast yet efficient iterative optimization strategy is developed. Our approach achieves favorable place on optical flow benchmark, which locates at the top two and top four for endpoint error and angular error evaluations among more than 130 approaches listed in the webpage.
doi_str_mv 10.1007/s11042-020-08633-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2405451701</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2405451701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-e547eb1b6633c05e8907aeddae2dca6ee5edecfb5367a64d080c933fae55ba293</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqXwB5gsMRvOdhwnI6qAgooYKLPl2Jc2VZsEO0Xqv8clSGwsdze8d_fuI-Sawy0H0HeRc8gEAwEMilxKdjghE660ZFoLfppmWQDTCvg5uYhxA8BzJbIJeZk3qzW1zu2DdQfquhAw9l3rsXVI6wa3nmIcmp0dmq6lX42lr-9LWtmInvZ2cGu6O9amXV2Ss9puI1799in5eHxYzuZs8fb0PLtfMCd5OTBUmcaKV3mK6UBhUYK26L1F4Z3NERV6dHWlZK5tnnkowJVS1haVqqwo5ZTcjHv70H3uUziz6fahTSeNyEBlimvgSSVGlQtdjAFr04f0RTgYDubIzIzMTGJmfpiZQzLJ0RSTuF1h-Fv9j-sb9dhwZw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2405451701</pqid></control><display><type>article</type><title>High accuracy correspondence field estimation via MST based patch matching</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zhang, Feihu ; Xu, Shibiao ; Zhang, Xiaopeng</creator><creatorcontrib>Zhang, Feihu ; Xu, Shibiao ; Zhang, Xiaopeng</creatorcontrib><description>This paper presents an effective framework for correspondence field estimation. The core idea is to construct pixel-level and superpixel-level patch matching to achieve high accuracy estimation as well as fast speed computation. To this end, a hybrid edge-preserving supported weighting approach is first developed, which contributes to better performance on the pixel level, especially on those in the regions of fine structures. Then, a local Minimum Spanning Tree (MST) is constructed to describe regions and develop the adaptive smooth penalty weights, so that the over-patching in large textureless regions can be effectively avoided. In addition, the MST is further extended to handle occlusions in way of edge preserving strategy. Finally, all the above treatments are collected into an optimization model where the objective function is developed in terms of Markov Random Filed (MRF). In computation, a fast yet efficient iterative optimization strategy is developed. Our approach achieves favorable place on optical flow benchmark, which locates at the top two and top four for endpoint error and angular error evaluations among more than 130 approaches listed in the webpage.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-020-08633-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accuracy ; Algorithms ; Computer Communication Networks ; Computer Science ; Correspondence ; Data Structures and Information Theory ; Graph theory ; Iterative methods ; Matching ; Multimedia ; Multimedia Information Systems ; Optical flow (image analysis) ; Optimization ; Patching ; Pixels ; Special Purpose and Application-Based Systems</subject><ispartof>Multimedia tools and applications, 2020-05, Vol.79 (19-20), p.13291-13309</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-e547eb1b6633c05e8907aeddae2dca6ee5edecfb5367a64d080c933fae55ba293</citedby><cites>FETCH-LOGICAL-c319t-e547eb1b6633c05e8907aeddae2dca6ee5edecfb5367a64d080c933fae55ba293</cites><orcidid>0000-0003-4037-9900</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-020-08633-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-020-08633-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Zhang, Feihu</creatorcontrib><creatorcontrib>Xu, Shibiao</creatorcontrib><creatorcontrib>Zhang, Xiaopeng</creatorcontrib><title>High accuracy correspondence field estimation via MST based patch matching</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>This paper presents an effective framework for correspondence field estimation. The core idea is to construct pixel-level and superpixel-level patch matching to achieve high accuracy estimation as well as fast speed computation. To this end, a hybrid edge-preserving supported weighting approach is first developed, which contributes to better performance on the pixel level, especially on those in the regions of fine structures. Then, a local Minimum Spanning Tree (MST) is constructed to describe regions and develop the adaptive smooth penalty weights, so that the over-patching in large textureless regions can be effectively avoided. In addition, the MST is further extended to handle occlusions in way of edge preserving strategy. Finally, all the above treatments are collected into an optimization model where the objective function is developed in terms of Markov Random Filed (MRF). In computation, a fast yet efficient iterative optimization strategy is developed. Our approach achieves favorable place on optical flow benchmark, which locates at the top two and top four for endpoint error and angular error evaluations among more than 130 approaches listed in the webpage.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Correspondence</subject><subject>Data Structures and Information Theory</subject><subject>Graph theory</subject><subject>Iterative methods</subject><subject>Matching</subject><subject>Multimedia</subject><subject>Multimedia Information Systems</subject><subject>Optical flow (image analysis)</subject><subject>Optimization</subject><subject>Patching</subject><subject>Pixels</subject><subject>Special Purpose and Application-Based Systems</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kDFPwzAQhS0EEqXwB5gsMRvOdhwnI6qAgooYKLPl2Jc2VZsEO0Xqv8clSGwsdze8d_fuI-Sawy0H0HeRc8gEAwEMilxKdjghE660ZFoLfppmWQDTCvg5uYhxA8BzJbIJeZk3qzW1zu2DdQfquhAw9l3rsXVI6wa3nmIcmp0dmq6lX42lr-9LWtmInvZ2cGu6O9amXV2Ss9puI1799in5eHxYzuZs8fb0PLtfMCd5OTBUmcaKV3mK6UBhUYK26L1F4Z3NERV6dHWlZK5tnnkowJVS1haVqqwo5ZTcjHv70H3uUziz6fahTSeNyEBlimvgSSVGlQtdjAFr04f0RTgYDubIzIzMTGJmfpiZQzLJ0RSTuF1h-Fv9j-sb9dhwZw</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Zhang, Feihu</creator><creator>Xu, Shibiao</creator><creator>Zhang, Xiaopeng</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-4037-9900</orcidid></search><sort><creationdate>20200501</creationdate><title>High accuracy correspondence field estimation via MST based patch matching</title><author>Zhang, Feihu ; Xu, Shibiao ; Zhang, Xiaopeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-e547eb1b6633c05e8907aeddae2dca6ee5edecfb5367a64d080c933fae55ba293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Correspondence</topic><topic>Data Structures and Information Theory</topic><topic>Graph theory</topic><topic>Iterative methods</topic><topic>Matching</topic><topic>Multimedia</topic><topic>Multimedia Information Systems</topic><topic>Optical flow (image analysis)</topic><topic>Optimization</topic><topic>Patching</topic><topic>Pixels</topic><topic>Special Purpose and Application-Based Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Feihu</creatorcontrib><creatorcontrib>Xu, Shibiao</creatorcontrib><creatorcontrib>Zhang, Xiaopeng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Feihu</au><au>Xu, Shibiao</au><au>Zhang, Xiaopeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High accuracy correspondence field estimation via MST based patch matching</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>79</volume><issue>19-20</issue><spage>13291</spage><epage>13309</epage><pages>13291-13309</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>This paper presents an effective framework for correspondence field estimation. The core idea is to construct pixel-level and superpixel-level patch matching to achieve high accuracy estimation as well as fast speed computation. To this end, a hybrid edge-preserving supported weighting approach is first developed, which contributes to better performance on the pixel level, especially on those in the regions of fine structures. Then, a local Minimum Spanning Tree (MST) is constructed to describe regions and develop the adaptive smooth penalty weights, so that the over-patching in large textureless regions can be effectively avoided. In addition, the MST is further extended to handle occlusions in way of edge preserving strategy. Finally, all the above treatments are collected into an optimization model where the objective function is developed in terms of Markov Random Filed (MRF). In computation, a fast yet efficient iterative optimization strategy is developed. Our approach achieves favorable place on optical flow benchmark, which locates at the top two and top four for endpoint error and angular error evaluations among more than 130 approaches listed in the webpage.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-020-08633-y</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-4037-9900</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1380-7501
ispartof Multimedia tools and applications, 2020-05, Vol.79 (19-20), p.13291-13309
issn 1380-7501
1573-7721
language eng
recordid cdi_proquest_journals_2405451701
source SpringerLink Journals - AutoHoldings
subjects Accuracy
Algorithms
Computer Communication Networks
Computer Science
Correspondence
Data Structures and Information Theory
Graph theory
Iterative methods
Matching
Multimedia
Multimedia Information Systems
Optical flow (image analysis)
Optimization
Patching
Pixels
Special Purpose and Application-Based Systems
title High accuracy correspondence field estimation via MST based patch matching
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T02%3A27%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20accuracy%20correspondence%20field%20estimation%20via%20MST%20based%20patch%20matching&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Zhang,%20Feihu&rft.date=2020-05-01&rft.volume=79&rft.issue=19-20&rft.spage=13291&rft.epage=13309&rft.pages=13291-13309&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-020-08633-y&rft_dat=%3Cproquest_cross%3E2405451701%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2405451701&rft_id=info:pmid/&rfr_iscdi=true