Commutation semigroups of finite metacyclic groups with trivial centre

We study the right and left commutation semigroups of finite metacyclic groups with trivial centre. These are presented G ( m , n , k ) = a , b ; a m = 1 , b n = 1 , a b = a k ( m , n , k ∈ Z + ) with ( m , k - 1 ) = 1 and n = ind m ( k ) , the smallest positive integer for which k n = 1 ( mod m ) ,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Semigroup forum 2020-06, Vol.100 (3), p.765-789
Hauptverfasser: DeWolf, Darien, Edmunds, Charles C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 789
container_issue 3
container_start_page 765
container_title Semigroup forum
container_volume 100
creator DeWolf, Darien
Edmunds, Charles C.
description We study the right and left commutation semigroups of finite metacyclic groups with trivial centre. These are presented G ( m , n , k ) = a , b ; a m = 1 , b n = 1 , a b = a k ( m , n , k ∈ Z + ) with ( m , k - 1 ) = 1 and n = ind m ( k ) , the smallest positive integer for which k n = 1 ( mod m ) , with the conjugate of a by b written a b = b - 1 a b . The right and left commutation semigroups of G ,  denoted P ( G ) and Λ ( G ) , are the semigroups of mappings generated by ρ ( g ) : G → G and λ ( g ) : G → G defined by ( x ) ρ ( g ) = [ x , g ] and ( x ) λ ( g ) = [ g , x ] , where the commutator of g and h is defined as [ g , h ] = g - 1 h - 1 g h . This paper builds on a previous study of commutation semigroups of dihedral groups conducted by the authors with C. Levy. Here we show that a similar approach can be applied to G ,  a metacyclic group with trivial centre. We give a construction of P ( G ) and Λ ( G ) as unions of containers , an idea presented in the previous paper on dihedral groups. In the case that a is cyclic of order p or p 2 or its index is prime, we show that both P ( G ) and Λ ( G ) are disjoint unions of maximal containers. In these cases, we give an explicit representation of the elements of each commutation semigroup as well as formulas for their exact orders. Finally, we extend a result of J. Countryman to show that, for G ( m ,  n ,  k ) with m prime, the condition P ( G ) = Λ ( G ) is equivalent to P ( G ) = Λ ( G ) .
doi_str_mv 10.1007/s00233-020-10097-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2405323925</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2405323925</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-ee54ae1f09f48027733142b7ba1594ef8d7b80c930e917cb1ef819b36d49e1c13</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWKt_wNOC5-hMZrdpjlKsCgUveg67abamdDc1ySr990a34M3T8GbeewMfY9cItwgg7yKAIOIggGetJKcTNsGSBBdI8pRNAEhyVCjO2UWMW8gaZjRhy4XvuiHVyfm-iLZzm-CHfSx8W7Sud8kWnU21OZidM8Xx9uXSe5GC-3T1rjC2T8FesrO23kV7dZxT9rZ8eF088dXL4_PifsWNkJC4tVVZW2xBteUchJREWIpGNjVWqrTtfC2bORhFYBVK02BeoWpoti6VRYM0ZTdj7z74j8HGpLd-CH1-qUUJFQlSosouMbpM8DEG2-p9cF0dDhpB__DSIy-deelfXppyiMZQzOZ-Y8Nf9T-pb3T2bZU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2405323925</pqid></control><display><type>article</type><title>Commutation semigroups of finite metacyclic groups with trivial centre</title><source>SpringerLink Journals - AutoHoldings</source><creator>DeWolf, Darien ; Edmunds, Charles C.</creator><creatorcontrib>DeWolf, Darien ; Edmunds, Charles C.</creatorcontrib><description>We study the right and left commutation semigroups of finite metacyclic groups with trivial centre. These are presented G ( m , n , k ) = a , b ; a m = 1 , b n = 1 , a b = a k ( m , n , k ∈ Z + ) with ( m , k - 1 ) = 1 and n = ind m ( k ) , the smallest positive integer for which k n = 1 ( mod m ) , with the conjugate of a by b written a b = b - 1 a b . The right and left commutation semigroups of G ,  denoted P ( G ) and Λ ( G ) , are the semigroups of mappings generated by ρ ( g ) : G → G and λ ( g ) : G → G defined by ( x ) ρ ( g ) = [ x , g ] and ( x ) λ ( g ) = [ g , x ] , where the commutator of g and h is defined as [ g , h ] = g - 1 h - 1 g h . This paper builds on a previous study of commutation semigroups of dihedral groups conducted by the authors with C. Levy. Here we show that a similar approach can be applied to G ,  a metacyclic group with trivial centre. We give a construction of P ( G ) and Λ ( G ) as unions of containers , an idea presented in the previous paper on dihedral groups. In the case that a is cyclic of order p or p 2 or its index is prime, we show that both P ( G ) and Λ ( G ) are disjoint unions of maximal containers. In these cases, we give an explicit representation of the elements of each commutation semigroup as well as formulas for their exact orders. Finally, we extend a result of J. Countryman to show that, for G ( m ,  n ,  k ) with m prime, the condition P ( G ) = Λ ( G ) is equivalent to P ( G ) = Λ ( G ) .</description><identifier>ISSN: 0037-1912</identifier><identifier>EISSN: 1432-2137</identifier><identifier>DOI: 10.1007/s00233-020-10097-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Commutation ; Commutators ; Containers ; Mathematics ; Mathematics and Statistics ; Research Article ; Unions</subject><ispartof>Semigroup forum, 2020-06, Vol.100 (3), p.765-789</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-ee54ae1f09f48027733142b7ba1594ef8d7b80c930e917cb1ef819b36d49e1c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00233-020-10097-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00233-020-10097-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>DeWolf, Darien</creatorcontrib><creatorcontrib>Edmunds, Charles C.</creatorcontrib><title>Commutation semigroups of finite metacyclic groups with trivial centre</title><title>Semigroup forum</title><addtitle>Semigroup Forum</addtitle><description>We study the right and left commutation semigroups of finite metacyclic groups with trivial centre. These are presented G ( m , n , k ) = a , b ; a m = 1 , b n = 1 , a b = a k ( m , n , k ∈ Z + ) with ( m , k - 1 ) = 1 and n = ind m ( k ) , the smallest positive integer for which k n = 1 ( mod m ) , with the conjugate of a by b written a b = b - 1 a b . The right and left commutation semigroups of G ,  denoted P ( G ) and Λ ( G ) , are the semigroups of mappings generated by ρ ( g ) : G → G and λ ( g ) : G → G defined by ( x ) ρ ( g ) = [ x , g ] and ( x ) λ ( g ) = [ g , x ] , where the commutator of g and h is defined as [ g , h ] = g - 1 h - 1 g h . This paper builds on a previous study of commutation semigroups of dihedral groups conducted by the authors with C. Levy. Here we show that a similar approach can be applied to G ,  a metacyclic group with trivial centre. We give a construction of P ( G ) and Λ ( G ) as unions of containers , an idea presented in the previous paper on dihedral groups. In the case that a is cyclic of order p or p 2 or its index is prime, we show that both P ( G ) and Λ ( G ) are disjoint unions of maximal containers. In these cases, we give an explicit representation of the elements of each commutation semigroup as well as formulas for their exact orders. Finally, we extend a result of J. Countryman to show that, for G ( m ,  n ,  k ) with m prime, the condition P ( G ) = Λ ( G ) is equivalent to P ( G ) = Λ ( G ) .</description><subject>Algebra</subject><subject>Commutation</subject><subject>Commutators</subject><subject>Containers</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Research Article</subject><subject>Unions</subject><issn>0037-1912</issn><issn>1432-2137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEQhYMoWKt_wNOC5-hMZrdpjlKsCgUveg67abamdDc1ySr990a34M3T8GbeewMfY9cItwgg7yKAIOIggGetJKcTNsGSBBdI8pRNAEhyVCjO2UWMW8gaZjRhy4XvuiHVyfm-iLZzm-CHfSx8W7Sud8kWnU21OZidM8Xx9uXSe5GC-3T1rjC2T8FesrO23kV7dZxT9rZ8eF088dXL4_PifsWNkJC4tVVZW2xBteUchJREWIpGNjVWqrTtfC2bORhFYBVK02BeoWpoti6VRYM0ZTdj7z74j8HGpLd-CH1-qUUJFQlSosouMbpM8DEG2-p9cF0dDhpB__DSIy-deelfXppyiMZQzOZ-Y8Nf9T-pb3T2bZU</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>DeWolf, Darien</creator><creator>Edmunds, Charles C.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200601</creationdate><title>Commutation semigroups of finite metacyclic groups with trivial centre</title><author>DeWolf, Darien ; Edmunds, Charles C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-ee54ae1f09f48027733142b7ba1594ef8d7b80c930e917cb1ef819b36d49e1c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algebra</topic><topic>Commutation</topic><topic>Commutators</topic><topic>Containers</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Research Article</topic><topic>Unions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DeWolf, Darien</creatorcontrib><creatorcontrib>Edmunds, Charles C.</creatorcontrib><collection>CrossRef</collection><jtitle>Semigroup forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DeWolf, Darien</au><au>Edmunds, Charles C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Commutation semigroups of finite metacyclic groups with trivial centre</atitle><jtitle>Semigroup forum</jtitle><stitle>Semigroup Forum</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>100</volume><issue>3</issue><spage>765</spage><epage>789</epage><pages>765-789</pages><issn>0037-1912</issn><eissn>1432-2137</eissn><abstract>We study the right and left commutation semigroups of finite metacyclic groups with trivial centre. These are presented G ( m , n , k ) = a , b ; a m = 1 , b n = 1 , a b = a k ( m , n , k ∈ Z + ) with ( m , k - 1 ) = 1 and n = ind m ( k ) , the smallest positive integer for which k n = 1 ( mod m ) , with the conjugate of a by b written a b = b - 1 a b . The right and left commutation semigroups of G ,  denoted P ( G ) and Λ ( G ) , are the semigroups of mappings generated by ρ ( g ) : G → G and λ ( g ) : G → G defined by ( x ) ρ ( g ) = [ x , g ] and ( x ) λ ( g ) = [ g , x ] , where the commutator of g and h is defined as [ g , h ] = g - 1 h - 1 g h . This paper builds on a previous study of commutation semigroups of dihedral groups conducted by the authors with C. Levy. Here we show that a similar approach can be applied to G ,  a metacyclic group with trivial centre. We give a construction of P ( G ) and Λ ( G ) as unions of containers , an idea presented in the previous paper on dihedral groups. In the case that a is cyclic of order p or p 2 or its index is prime, we show that both P ( G ) and Λ ( G ) are disjoint unions of maximal containers. In these cases, we give an explicit representation of the elements of each commutation semigroup as well as formulas for their exact orders. Finally, we extend a result of J. Countryman to show that, for G ( m ,  n ,  k ) with m prime, the condition P ( G ) = Λ ( G ) is equivalent to P ( G ) = Λ ( G ) .</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00233-020-10097-3</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0037-1912
ispartof Semigroup forum, 2020-06, Vol.100 (3), p.765-789
issn 0037-1912
1432-2137
language eng
recordid cdi_proquest_journals_2405323925
source SpringerLink Journals - AutoHoldings
subjects Algebra
Commutation
Commutators
Containers
Mathematics
Mathematics and Statistics
Research Article
Unions
title Commutation semigroups of finite metacyclic groups with trivial centre
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T14%3A28%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Commutation%20semigroups%20of%20finite%20metacyclic%20groups%20with%20trivial%20centre&rft.jtitle=Semigroup%20forum&rft.au=DeWolf,%20Darien&rft.date=2020-06-01&rft.volume=100&rft.issue=3&rft.spage=765&rft.epage=789&rft.pages=765-789&rft.issn=0037-1912&rft.eissn=1432-2137&rft_id=info:doi/10.1007/s00233-020-10097-3&rft_dat=%3Cproquest_cross%3E2405323925%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2405323925&rft_id=info:pmid/&rfr_iscdi=true