Frequency-Dependent Squeezing for Advanced LIGO

The first detection of gravitational waves by the Laser Interferometer Gravitational-Wave Observatory (LIGO) in 2015 launched the era of gravitational-wave astronomy. The quest for gravitational-wave signals from objects that are fainter or farther away impels technological advances to realize ever...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2020-05, Vol.124 (17), p.171102
Hauptverfasser: McCuller, L, Whittle, C, Ganapathy, D, Komori, K, Tse, M, Fernandez-Galiana, A, Barsotti, L, Fritschel, P, MacInnis, M, Matichard, F, Mason, K, Mavalvala, N, Mittleman, R, Yu, Haocun, Zucker, M E, Evans, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 17
container_start_page 171102
container_title Physical review letters
container_volume 124
creator McCuller, L
Whittle, C
Ganapathy, D
Komori, K
Tse, M
Fernandez-Galiana, A
Barsotti, L
Fritschel, P
MacInnis, M
Matichard, F
Mason, K
Mavalvala, N
Mittleman, R
Yu, Haocun
Zucker, M E
Evans, M
description The first detection of gravitational waves by the Laser Interferometer Gravitational-Wave Observatory (LIGO) in 2015 launched the era of gravitational-wave astronomy. The quest for gravitational-wave signals from objects that are fainter or farther away impels technological advances to realize ever more sensitive detectors. Since 2019, one advanced technique, the injection of squeezed states of light, is being used to improve the shot-noise limit to the sensitivity of the Advanced LIGO detectors, at frequencies above ∼50  Hz. Below this frequency, quantum backaction, in the form of radiation pressure induced motion of the mirrors, degrades the sensitivity. To simultaneously reduce shot noise at high frequencies and quantum radiation pressure noise at low frequencies requires a quantum noise filter cavity with low optical losses to rotate the squeezed quadrature as a function of frequency. We report on the observation of frequency-dependent squeezed quadrature rotation with rotation frequency of 30 Hz, using a 16-m-long filter cavity. A novel control scheme is developed for this frequency-dependent squeezed vacuum source, and the results presented here demonstrate that a low-loss filter cavity can achieve the squeezed quadrature rotation necessary for the next planned upgrade to Advanced LIGO, known as "A+."
doi_str_mv 10.1103/PhysRevLett.124.171102
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2405320379</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2405320379</sourcerecordid><originalsourceid>FETCH-LOGICAL-p136t-c3c47e9cfad52c07b73268e964f03b57bda857ce8619a7411379cf477fe2eb353</originalsourceid><addsrcrecordid>eNo1j1tLw0AQhRdRbKz-hRLwedOZvWSTx1JtLQQqXp5Dsploi03iJi3EX--C9Wk4h2_mnGFshhAhgpw_f479C50yGoYIhYrQeFtcsADBpNwLdckCAIk8BTATdtP3ewBAESfXbCKFQiG0CNh85ej7SI0d-QN11FTUDOGrd-hn13yEdevCRXUqGktVmG3W21t2VRdfPd2d55S9rx7flk882643y0XGO5TxwK20ylBq66LSwoIpjfTJlMaqBllqU1ZFoo2lJMa0MApRGg8rY2oSVEotp-z-727nWt-mH_J9e3SNj8yFAi0F-A1Pzc7UsTxQlXdudyjcmP__J38BDeZS7Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2405320379</pqid></control><display><type>article</type><title>Frequency-Dependent Squeezing for Advanced LIGO</title><source>American Physical Society Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>McCuller, L ; Whittle, C ; Ganapathy, D ; Komori, K ; Tse, M ; Fernandez-Galiana, A ; Barsotti, L ; Fritschel, P ; MacInnis, M ; Matichard, F ; Mason, K ; Mavalvala, N ; Mittleman, R ; Yu, Haocun ; Zucker, M E ; Evans, M</creator><creatorcontrib>McCuller, L ; Whittle, C ; Ganapathy, D ; Komori, K ; Tse, M ; Fernandez-Galiana, A ; Barsotti, L ; Fritschel, P ; MacInnis, M ; Matichard, F ; Mason, K ; Mavalvala, N ; Mittleman, R ; Yu, Haocun ; Zucker, M E ; Evans, M</creatorcontrib><description>The first detection of gravitational waves by the Laser Interferometer Gravitational-Wave Observatory (LIGO) in 2015 launched the era of gravitational-wave astronomy. The quest for gravitational-wave signals from objects that are fainter or farther away impels technological advances to realize ever more sensitive detectors. Since 2019, one advanced technique, the injection of squeezed states of light, is being used to improve the shot-noise limit to the sensitivity of the Advanced LIGO detectors, at frequencies above ∼50  Hz. Below this frequency, quantum backaction, in the form of radiation pressure induced motion of the mirrors, degrades the sensitivity. To simultaneously reduce shot noise at high frequencies and quantum radiation pressure noise at low frequencies requires a quantum noise filter cavity with low optical losses to rotate the squeezed quadrature as a function of frequency. We report on the observation of frequency-dependent squeezed quadrature rotation with rotation frequency of 30 Hz, using a 16-m-long filter cavity. A novel control scheme is developed for this frequency-dependent squeezed vacuum source, and the results presented here demonstrate that a low-loss filter cavity can achieve the squeezed quadrature rotation necessary for the next planned upgrade to Advanced LIGO, known as "A+."</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.124.171102</identifier><identifier>PMID: 32412252</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Astronomy ; Detectors ; Gravitation ; Gravitational waves ; LIGO (observatory) ; Noise ; Noise reduction ; Noise sensitivity ; Quadratures ; Radiation pressure ; Rotation ; Shot noise ; Squeezed states (quantum theory)</subject><ispartof>Physical review letters, 2020-05, Vol.124 (17), p.171102</ispartof><rights>Copyright American Physical Society May 1, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32412252$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McCuller, L</creatorcontrib><creatorcontrib>Whittle, C</creatorcontrib><creatorcontrib>Ganapathy, D</creatorcontrib><creatorcontrib>Komori, K</creatorcontrib><creatorcontrib>Tse, M</creatorcontrib><creatorcontrib>Fernandez-Galiana, A</creatorcontrib><creatorcontrib>Barsotti, L</creatorcontrib><creatorcontrib>Fritschel, P</creatorcontrib><creatorcontrib>MacInnis, M</creatorcontrib><creatorcontrib>Matichard, F</creatorcontrib><creatorcontrib>Mason, K</creatorcontrib><creatorcontrib>Mavalvala, N</creatorcontrib><creatorcontrib>Mittleman, R</creatorcontrib><creatorcontrib>Yu, Haocun</creatorcontrib><creatorcontrib>Zucker, M E</creatorcontrib><creatorcontrib>Evans, M</creatorcontrib><title>Frequency-Dependent Squeezing for Advanced LIGO</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>The first detection of gravitational waves by the Laser Interferometer Gravitational-Wave Observatory (LIGO) in 2015 launched the era of gravitational-wave astronomy. The quest for gravitational-wave signals from objects that are fainter or farther away impels technological advances to realize ever more sensitive detectors. Since 2019, one advanced technique, the injection of squeezed states of light, is being used to improve the shot-noise limit to the sensitivity of the Advanced LIGO detectors, at frequencies above ∼50  Hz. Below this frequency, quantum backaction, in the form of radiation pressure induced motion of the mirrors, degrades the sensitivity. To simultaneously reduce shot noise at high frequencies and quantum radiation pressure noise at low frequencies requires a quantum noise filter cavity with low optical losses to rotate the squeezed quadrature as a function of frequency. We report on the observation of frequency-dependent squeezed quadrature rotation with rotation frequency of 30 Hz, using a 16-m-long filter cavity. A novel control scheme is developed for this frequency-dependent squeezed vacuum source, and the results presented here demonstrate that a low-loss filter cavity can achieve the squeezed quadrature rotation necessary for the next planned upgrade to Advanced LIGO, known as "A+."</description><subject>Astronomy</subject><subject>Detectors</subject><subject>Gravitation</subject><subject>Gravitational waves</subject><subject>LIGO (observatory)</subject><subject>Noise</subject><subject>Noise reduction</subject><subject>Noise sensitivity</subject><subject>Quadratures</subject><subject>Radiation pressure</subject><subject>Rotation</subject><subject>Shot noise</subject><subject>Squeezed states (quantum theory)</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo1j1tLw0AQhRdRbKz-hRLwedOZvWSTx1JtLQQqXp5Dsploi03iJi3EX--C9Wk4h2_mnGFshhAhgpw_f479C50yGoYIhYrQeFtcsADBpNwLdckCAIk8BTATdtP3ewBAESfXbCKFQiG0CNh85ej7SI0d-QN11FTUDOGrd-hn13yEdevCRXUqGktVmG3W21t2VRdfPd2d55S9rx7flk882643y0XGO5TxwK20ylBq66LSwoIpjfTJlMaqBllqU1ZFoo2lJMa0MApRGg8rY2oSVEotp-z-727nWt-mH_J9e3SNj8yFAi0F-A1Pzc7UsTxQlXdudyjcmP__J38BDeZS7Q</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>McCuller, L</creator><creator>Whittle, C</creator><creator>Ganapathy, D</creator><creator>Komori, K</creator><creator>Tse, M</creator><creator>Fernandez-Galiana, A</creator><creator>Barsotti, L</creator><creator>Fritschel, P</creator><creator>MacInnis, M</creator><creator>Matichard, F</creator><creator>Mason, K</creator><creator>Mavalvala, N</creator><creator>Mittleman, R</creator><creator>Yu, Haocun</creator><creator>Zucker, M E</creator><creator>Evans, M</creator><general>American Physical Society</general><scope>NPM</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20200501</creationdate><title>Frequency-Dependent Squeezing for Advanced LIGO</title><author>McCuller, L ; Whittle, C ; Ganapathy, D ; Komori, K ; Tse, M ; Fernandez-Galiana, A ; Barsotti, L ; Fritschel, P ; MacInnis, M ; Matichard, F ; Mason, K ; Mavalvala, N ; Mittleman, R ; Yu, Haocun ; Zucker, M E ; Evans, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p136t-c3c47e9cfad52c07b73268e964f03b57bda857ce8619a7411379cf477fe2eb353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Astronomy</topic><topic>Detectors</topic><topic>Gravitation</topic><topic>Gravitational waves</topic><topic>LIGO (observatory)</topic><topic>Noise</topic><topic>Noise reduction</topic><topic>Noise sensitivity</topic><topic>Quadratures</topic><topic>Radiation pressure</topic><topic>Rotation</topic><topic>Shot noise</topic><topic>Squeezed states (quantum theory)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McCuller, L</creatorcontrib><creatorcontrib>Whittle, C</creatorcontrib><creatorcontrib>Ganapathy, D</creatorcontrib><creatorcontrib>Komori, K</creatorcontrib><creatorcontrib>Tse, M</creatorcontrib><creatorcontrib>Fernandez-Galiana, A</creatorcontrib><creatorcontrib>Barsotti, L</creatorcontrib><creatorcontrib>Fritschel, P</creatorcontrib><creatorcontrib>MacInnis, M</creatorcontrib><creatorcontrib>Matichard, F</creatorcontrib><creatorcontrib>Mason, K</creatorcontrib><creatorcontrib>Mavalvala, N</creatorcontrib><creatorcontrib>Mittleman, R</creatorcontrib><creatorcontrib>Yu, Haocun</creatorcontrib><creatorcontrib>Zucker, M E</creatorcontrib><creatorcontrib>Evans, M</creatorcontrib><collection>PubMed</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McCuller, L</au><au>Whittle, C</au><au>Ganapathy, D</au><au>Komori, K</au><au>Tse, M</au><au>Fernandez-Galiana, A</au><au>Barsotti, L</au><au>Fritschel, P</au><au>MacInnis, M</au><au>Matichard, F</au><au>Mason, K</au><au>Mavalvala, N</au><au>Mittleman, R</au><au>Yu, Haocun</au><au>Zucker, M E</au><au>Evans, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Frequency-Dependent Squeezing for Advanced LIGO</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2020-05-01</date><risdate>2020</risdate><volume>124</volume><issue>17</issue><spage>171102</spage><pages>171102-</pages><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>The first detection of gravitational waves by the Laser Interferometer Gravitational-Wave Observatory (LIGO) in 2015 launched the era of gravitational-wave astronomy. The quest for gravitational-wave signals from objects that are fainter or farther away impels technological advances to realize ever more sensitive detectors. Since 2019, one advanced technique, the injection of squeezed states of light, is being used to improve the shot-noise limit to the sensitivity of the Advanced LIGO detectors, at frequencies above ∼50  Hz. Below this frequency, quantum backaction, in the form of radiation pressure induced motion of the mirrors, degrades the sensitivity. To simultaneously reduce shot noise at high frequencies and quantum radiation pressure noise at low frequencies requires a quantum noise filter cavity with low optical losses to rotate the squeezed quadrature as a function of frequency. We report on the observation of frequency-dependent squeezed quadrature rotation with rotation frequency of 30 Hz, using a 16-m-long filter cavity. A novel control scheme is developed for this frequency-dependent squeezed vacuum source, and the results presented here demonstrate that a low-loss filter cavity can achieve the squeezed quadrature rotation necessary for the next planned upgrade to Advanced LIGO, known as "A+."</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>32412252</pmid><doi>10.1103/PhysRevLett.124.171102</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2020-05, Vol.124 (17), p.171102
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_journals_2405320379
source American Physical Society Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Astronomy
Detectors
Gravitation
Gravitational waves
LIGO (observatory)
Noise
Noise reduction
Noise sensitivity
Quadratures
Radiation pressure
Rotation
Shot noise
Squeezed states (quantum theory)
title Frequency-Dependent Squeezing for Advanced LIGO
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T09%3A57%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Frequency-Dependent%20Squeezing%20for%20Advanced%20LIGO&rft.jtitle=Physical%20review%20letters&rft.au=McCuller,%20L&rft.date=2020-05-01&rft.volume=124&rft.issue=17&rft.spage=171102&rft.pages=171102-&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.124.171102&rft_dat=%3Cproquest_pubme%3E2405320379%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2405320379&rft_id=info:pmid/32412252&rfr_iscdi=true