Impingement of a counter-rotating vortex pair on a wavy wall

In this paper, we investigate the impingement of a two-dimensional (2-D) vortex pair translating downwards onto a horizontal wall with a wavy surface. A principal purpose is to compare the vortex dynamics with the complementary case of a wavy vortex pair (deformed by the long-wavelength Crow instabi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2020-07, Vol.895, Article A25
Hauptverfasser: Morris, Sarah E., Williamson, C. H. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Journal of fluid mechanics
container_volume 895
creator Morris, Sarah E.
Williamson, C. H. K.
description In this paper, we investigate the impingement of a two-dimensional (2-D) vortex pair translating downwards onto a horizontal wall with a wavy surface. A principal purpose is to compare the vortex dynamics with the complementary case of a wavy vortex pair (deformed by the long-wavelength Crow instability) impinging onto a flat surface. The simpler case of a 2-D vortex pair descending onto a flat horizontal ground plane leads to the well known ‘rebound’ effect, wherein the primary vortex pair approaches the wall but subsequently advects vertically upwards, due to the induced velocity of secondary vorticity. In contrast, a wavy vortex pair descending onto a flat plane leads to ‘rebounding’ vorticity in the form of vortex rings. A descending 2-D vortex pair, impinging on a wavy wall, also generates ‘rebounding’ vortex rings. In this case, we observe that the vortex pair interacts first with the ‘hills’ of the wavy wall before the ‘valleys’. The resulting secondary vorticity rolls up into a concentrated vortex tube, ultimately forming a vortex loop along each valley. Each vortex loop pinches off to form a vortex ring, which advects upwards. Surprisingly, these rebounding vortex rings evolve without the strong axial flows fundamental to the wavy vortex case. The present research is relevant to wing tip trailing vortices interacting with a non-uniform ground plane. A non-flat wall is shown to accelerate the decay of the primary vortex pair. Such a passive, ground-based method to diminish the wake vortex hazard close to the ground is consistent with Stephan et al. ( J. Aircraft , vol. 50 (4), 2013 a , pp. 1250–1260; CEAS Aeronaut. J. , vol. 5 (2), 2013 b , pp. 109–125).
doi_str_mv 10.1017/jfm.2020.263
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2405193721</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2405193721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-ac33589a69a2456c4338d74c623e9f1aa79a05ca39da4cc7250650fbb43b20233</originalsourceid><addsrcrecordid>eNotkE1LAzEQhoMoWKs3f8CCV7dOMvlowIsUPwoFL3oO0zQrLd3Nmk2r_fem1MvMYR7m5X0Yu-Uw4cDNw6ZpJwIETITGMzbiUtvaaKnO2QhAiJpzAZfsahg2ABzBmhF7nLf9uvsKbehyFZuKKh93XQ6pTjFTLqdqH1MOv1VP61TFrhA_tD-Usd1es4uGtkO4-d9j9vny_DF7qxfvr_PZ06L2aG2uySOqqSVtSUilvUScroz0WmCwDScylkB5Qrsi6b0RCrSCZrmUuCx1EMfs7vS3T_F7F4bsNnGXuhLphATFLRrBC3V_onyKw5BC4_q0bikdHAd39OOKH3f044of_AOglVcQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2405193721</pqid></control><display><type>article</type><title>Impingement of a counter-rotating vortex pair on a wavy wall</title><source>Cambridge University Press Journals Complete</source><creator>Morris, Sarah E. ; Williamson, C. H. K.</creator><creatorcontrib>Morris, Sarah E. ; Williamson, C. H. K.</creatorcontrib><description>In this paper, we investigate the impingement of a two-dimensional (2-D) vortex pair translating downwards onto a horizontal wall with a wavy surface. A principal purpose is to compare the vortex dynamics with the complementary case of a wavy vortex pair (deformed by the long-wavelength Crow instability) impinging onto a flat surface. The simpler case of a 2-D vortex pair descending onto a flat horizontal ground plane leads to the well known ‘rebound’ effect, wherein the primary vortex pair approaches the wall but subsequently advects vertically upwards, due to the induced velocity of secondary vorticity. In contrast, a wavy vortex pair descending onto a flat plane leads to ‘rebounding’ vorticity in the form of vortex rings. A descending 2-D vortex pair, impinging on a wavy wall, also generates ‘rebounding’ vortex rings. In this case, we observe that the vortex pair interacts first with the ‘hills’ of the wavy wall before the ‘valleys’. The resulting secondary vorticity rolls up into a concentrated vortex tube, ultimately forming a vortex loop along each valley. Each vortex loop pinches off to form a vortex ring, which advects upwards. Surprisingly, these rebounding vortex rings evolve without the strong axial flows fundamental to the wavy vortex case. The present research is relevant to wing tip trailing vortices interacting with a non-uniform ground plane. A non-flat wall is shown to accelerate the decay of the primary vortex pair. Such a passive, ground-based method to diminish the wake vortex hazard close to the ground is consistent with Stephan et al. ( J. Aircraft , vol. 50 (4), 2013 a , pp. 1250–1260; CEAS Aeronaut. J. , vol. 5 (2), 2013 b , pp. 109–125).</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2020.263</identifier><language>eng</language><publisher>Cambridge: Cambridge University Press</publisher><subject>Aerodynamics ; Aircraft ; Axial flow ; Experiments ; Flat surfaces ; Fluid mechanics ; Ground plane ; Impingement ; Reynolds number ; Surface stability ; Trailing vortices ; Valleys ; Vehicles ; Vortex rings ; Vortices ; Vorticity ; Wavelength ; Wing tips</subject><ispartof>Journal of fluid mechanics, 2020-07, Vol.895, Article A25</ispartof><rights>The Author(s), 2020. Published by Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-ac33589a69a2456c4338d74c623e9f1aa79a05ca39da4cc7250650fbb43b20233</citedby><cites>FETCH-LOGICAL-c399t-ac33589a69a2456c4338d74c623e9f1aa79a05ca39da4cc7250650fbb43b20233</cites><orcidid>0000-0002-3691-6681</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Morris, Sarah E.</creatorcontrib><creatorcontrib>Williamson, C. H. K.</creatorcontrib><title>Impingement of a counter-rotating vortex pair on a wavy wall</title><title>Journal of fluid mechanics</title><description>In this paper, we investigate the impingement of a two-dimensional (2-D) vortex pair translating downwards onto a horizontal wall with a wavy surface. A principal purpose is to compare the vortex dynamics with the complementary case of a wavy vortex pair (deformed by the long-wavelength Crow instability) impinging onto a flat surface. The simpler case of a 2-D vortex pair descending onto a flat horizontal ground plane leads to the well known ‘rebound’ effect, wherein the primary vortex pair approaches the wall but subsequently advects vertically upwards, due to the induced velocity of secondary vorticity. In contrast, a wavy vortex pair descending onto a flat plane leads to ‘rebounding’ vorticity in the form of vortex rings. A descending 2-D vortex pair, impinging on a wavy wall, also generates ‘rebounding’ vortex rings. In this case, we observe that the vortex pair interacts first with the ‘hills’ of the wavy wall before the ‘valleys’. The resulting secondary vorticity rolls up into a concentrated vortex tube, ultimately forming a vortex loop along each valley. Each vortex loop pinches off to form a vortex ring, which advects upwards. Surprisingly, these rebounding vortex rings evolve without the strong axial flows fundamental to the wavy vortex case. The present research is relevant to wing tip trailing vortices interacting with a non-uniform ground plane. A non-flat wall is shown to accelerate the decay of the primary vortex pair. Such a passive, ground-based method to diminish the wake vortex hazard close to the ground is consistent with Stephan et al. ( J. Aircraft , vol. 50 (4), 2013 a , pp. 1250–1260; CEAS Aeronaut. J. , vol. 5 (2), 2013 b , pp. 109–125).</description><subject>Aerodynamics</subject><subject>Aircraft</subject><subject>Axial flow</subject><subject>Experiments</subject><subject>Flat surfaces</subject><subject>Fluid mechanics</subject><subject>Ground plane</subject><subject>Impingement</subject><subject>Reynolds number</subject><subject>Surface stability</subject><subject>Trailing vortices</subject><subject>Valleys</subject><subject>Vehicles</subject><subject>Vortex rings</subject><subject>Vortices</subject><subject>Vorticity</subject><subject>Wavelength</subject><subject>Wing tips</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNotkE1LAzEQhoMoWKs3f8CCV7dOMvlowIsUPwoFL3oO0zQrLd3Nmk2r_fem1MvMYR7m5X0Yu-Uw4cDNw6ZpJwIETITGMzbiUtvaaKnO2QhAiJpzAZfsahg2ABzBmhF7nLf9uvsKbehyFZuKKh93XQ6pTjFTLqdqH1MOv1VP61TFrhA_tD-Usd1es4uGtkO4-d9j9vny_DF7qxfvr_PZ06L2aG2uySOqqSVtSUilvUScroz0WmCwDScylkB5Qrsi6b0RCrSCZrmUuCx1EMfs7vS3T_F7F4bsNnGXuhLphATFLRrBC3V_onyKw5BC4_q0bikdHAd39OOKH3f044of_AOglVcQ</recordid><startdate>20200725</startdate><enddate>20200725</enddate><creator>Morris, Sarah E.</creator><creator>Williamson, C. H. K.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3691-6681</orcidid></search><sort><creationdate>20200725</creationdate><title>Impingement of a counter-rotating vortex pair on a wavy wall</title><author>Morris, Sarah E. ; Williamson, C. H. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-ac33589a69a2456c4338d74c623e9f1aa79a05ca39da4cc7250650fbb43b20233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aerodynamics</topic><topic>Aircraft</topic><topic>Axial flow</topic><topic>Experiments</topic><topic>Flat surfaces</topic><topic>Fluid mechanics</topic><topic>Ground plane</topic><topic>Impingement</topic><topic>Reynolds number</topic><topic>Surface stability</topic><topic>Trailing vortices</topic><topic>Valleys</topic><topic>Vehicles</topic><topic>Vortex rings</topic><topic>Vortices</topic><topic>Vorticity</topic><topic>Wavelength</topic><topic>Wing tips</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morris, Sarah E.</creatorcontrib><creatorcontrib>Williamson, C. H. K.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morris, Sarah E.</au><au>Williamson, C. H. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impingement of a counter-rotating vortex pair on a wavy wall</atitle><jtitle>Journal of fluid mechanics</jtitle><date>2020-07-25</date><risdate>2020</risdate><volume>895</volume><artnum>A25</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>In this paper, we investigate the impingement of a two-dimensional (2-D) vortex pair translating downwards onto a horizontal wall with a wavy surface. A principal purpose is to compare the vortex dynamics with the complementary case of a wavy vortex pair (deformed by the long-wavelength Crow instability) impinging onto a flat surface. The simpler case of a 2-D vortex pair descending onto a flat horizontal ground plane leads to the well known ‘rebound’ effect, wherein the primary vortex pair approaches the wall but subsequently advects vertically upwards, due to the induced velocity of secondary vorticity. In contrast, a wavy vortex pair descending onto a flat plane leads to ‘rebounding’ vorticity in the form of vortex rings. A descending 2-D vortex pair, impinging on a wavy wall, also generates ‘rebounding’ vortex rings. In this case, we observe that the vortex pair interacts first with the ‘hills’ of the wavy wall before the ‘valleys’. The resulting secondary vorticity rolls up into a concentrated vortex tube, ultimately forming a vortex loop along each valley. Each vortex loop pinches off to form a vortex ring, which advects upwards. Surprisingly, these rebounding vortex rings evolve without the strong axial flows fundamental to the wavy vortex case. The present research is relevant to wing tip trailing vortices interacting with a non-uniform ground plane. A non-flat wall is shown to accelerate the decay of the primary vortex pair. Such a passive, ground-based method to diminish the wake vortex hazard close to the ground is consistent with Stephan et al. ( J. Aircraft , vol. 50 (4), 2013 a , pp. 1250–1260; CEAS Aeronaut. J. , vol. 5 (2), 2013 b , pp. 109–125).</abstract><cop>Cambridge</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2020.263</doi><orcidid>https://orcid.org/0000-0002-3691-6681</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2020-07, Vol.895, Article A25
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_2405193721
source Cambridge University Press Journals Complete
subjects Aerodynamics
Aircraft
Axial flow
Experiments
Flat surfaces
Fluid mechanics
Ground plane
Impingement
Reynolds number
Surface stability
Trailing vortices
Valleys
Vehicles
Vortex rings
Vortices
Vorticity
Wavelength
Wing tips
title Impingement of a counter-rotating vortex pair on a wavy wall
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T16%3A56%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impingement%20of%20a%20counter-rotating%20vortex%20pair%20on%20a%20wavy%20wall&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Morris,%20Sarah%20E.&rft.date=2020-07-25&rft.volume=895&rft.artnum=A25&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2020.263&rft_dat=%3Cproquest_cross%3E2405193721%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2405193721&rft_id=info:pmid/&rfr_iscdi=true