Impingement of a counter-rotating vortex pair on a wavy wall
In this paper, we investigate the impingement of a two-dimensional (2-D) vortex pair translating downwards onto a horizontal wall with a wavy surface. A principal purpose is to compare the vortex dynamics with the complementary case of a wavy vortex pair (deformed by the long-wavelength Crow instabi...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2020-07, Vol.895, Article A25 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Journal of fluid mechanics |
container_volume | 895 |
creator | Morris, Sarah E. Williamson, C. H. K. |
description | In this paper, we investigate the impingement of a two-dimensional (2-D) vortex pair translating downwards onto a horizontal wall with a wavy surface. A principal purpose is to compare the vortex dynamics with the complementary case of a wavy vortex pair (deformed by the long-wavelength Crow instability) impinging onto a flat surface. The simpler case of a 2-D vortex pair descending onto a flat horizontal ground plane leads to the well known ‘rebound’ effect, wherein the primary vortex pair approaches the wall but subsequently advects vertically upwards, due to the induced velocity of secondary vorticity. In contrast, a wavy vortex pair descending onto a flat plane leads to ‘rebounding’ vorticity in the form of vortex rings. A descending 2-D vortex pair, impinging on a wavy wall, also generates ‘rebounding’ vortex rings. In this case, we observe that the vortex pair interacts first with the ‘hills’ of the wavy wall before the ‘valleys’. The resulting secondary vorticity rolls up into a concentrated vortex tube, ultimately forming a vortex loop along each valley. Each vortex loop pinches off to form a vortex ring, which advects upwards. Surprisingly, these rebounding vortex rings evolve without the strong axial flows fundamental to the wavy vortex case. The present research is relevant to wing tip trailing vortices interacting with a non-uniform ground plane. A non-flat wall is shown to accelerate the decay of the primary vortex pair. Such a passive, ground-based method to diminish the wake vortex hazard close to the ground is consistent with Stephan
et al.
(
J. Aircraft
, vol. 50 (4), 2013
a
, pp. 1250–1260;
CEAS Aeronaut. J.
, vol. 5 (2), 2013
b
, pp. 109–125). |
doi_str_mv | 10.1017/jfm.2020.263 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2405193721</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2405193721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-ac33589a69a2456c4338d74c623e9f1aa79a05ca39da4cc7250650fbb43b20233</originalsourceid><addsrcrecordid>eNotkE1LAzEQhoMoWKs3f8CCV7dOMvlowIsUPwoFL3oO0zQrLd3Nmk2r_fem1MvMYR7m5X0Yu-Uw4cDNw6ZpJwIETITGMzbiUtvaaKnO2QhAiJpzAZfsahg2ABzBmhF7nLf9uvsKbehyFZuKKh93XQ6pTjFTLqdqH1MOv1VP61TFrhA_tD-Usd1es4uGtkO4-d9j9vny_DF7qxfvr_PZ06L2aG2uySOqqSVtSUilvUScroz0WmCwDScylkB5Qrsi6b0RCrSCZrmUuCx1EMfs7vS3T_F7F4bsNnGXuhLphATFLRrBC3V_onyKw5BC4_q0bikdHAd39OOKH3f044of_AOglVcQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2405193721</pqid></control><display><type>article</type><title>Impingement of a counter-rotating vortex pair on a wavy wall</title><source>Cambridge University Press Journals Complete</source><creator>Morris, Sarah E. ; Williamson, C. H. K.</creator><creatorcontrib>Morris, Sarah E. ; Williamson, C. H. K.</creatorcontrib><description>In this paper, we investigate the impingement of a two-dimensional (2-D) vortex pair translating downwards onto a horizontal wall with a wavy surface. A principal purpose is to compare the vortex dynamics with the complementary case of a wavy vortex pair (deformed by the long-wavelength Crow instability) impinging onto a flat surface. The simpler case of a 2-D vortex pair descending onto a flat horizontal ground plane leads to the well known ‘rebound’ effect, wherein the primary vortex pair approaches the wall but subsequently advects vertically upwards, due to the induced velocity of secondary vorticity. In contrast, a wavy vortex pair descending onto a flat plane leads to ‘rebounding’ vorticity in the form of vortex rings. A descending 2-D vortex pair, impinging on a wavy wall, also generates ‘rebounding’ vortex rings. In this case, we observe that the vortex pair interacts first with the ‘hills’ of the wavy wall before the ‘valleys’. The resulting secondary vorticity rolls up into a concentrated vortex tube, ultimately forming a vortex loop along each valley. Each vortex loop pinches off to form a vortex ring, which advects upwards. Surprisingly, these rebounding vortex rings evolve without the strong axial flows fundamental to the wavy vortex case. The present research is relevant to wing tip trailing vortices interacting with a non-uniform ground plane. A non-flat wall is shown to accelerate the decay of the primary vortex pair. Such a passive, ground-based method to diminish the wake vortex hazard close to the ground is consistent with Stephan
et al.
(
J. Aircraft
, vol. 50 (4), 2013
a
, pp. 1250–1260;
CEAS Aeronaut. J.
, vol. 5 (2), 2013
b
, pp. 109–125).</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2020.263</identifier><language>eng</language><publisher>Cambridge: Cambridge University Press</publisher><subject>Aerodynamics ; Aircraft ; Axial flow ; Experiments ; Flat surfaces ; Fluid mechanics ; Ground plane ; Impingement ; Reynolds number ; Surface stability ; Trailing vortices ; Valleys ; Vehicles ; Vortex rings ; Vortices ; Vorticity ; Wavelength ; Wing tips</subject><ispartof>Journal of fluid mechanics, 2020-07, Vol.895, Article A25</ispartof><rights>The Author(s), 2020. Published by Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-ac33589a69a2456c4338d74c623e9f1aa79a05ca39da4cc7250650fbb43b20233</citedby><cites>FETCH-LOGICAL-c399t-ac33589a69a2456c4338d74c623e9f1aa79a05ca39da4cc7250650fbb43b20233</cites><orcidid>0000-0002-3691-6681</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Morris, Sarah E.</creatorcontrib><creatorcontrib>Williamson, C. H. K.</creatorcontrib><title>Impingement of a counter-rotating vortex pair on a wavy wall</title><title>Journal of fluid mechanics</title><description>In this paper, we investigate the impingement of a two-dimensional (2-D) vortex pair translating downwards onto a horizontal wall with a wavy surface. A principal purpose is to compare the vortex dynamics with the complementary case of a wavy vortex pair (deformed by the long-wavelength Crow instability) impinging onto a flat surface. The simpler case of a 2-D vortex pair descending onto a flat horizontal ground plane leads to the well known ‘rebound’ effect, wherein the primary vortex pair approaches the wall but subsequently advects vertically upwards, due to the induced velocity of secondary vorticity. In contrast, a wavy vortex pair descending onto a flat plane leads to ‘rebounding’ vorticity in the form of vortex rings. A descending 2-D vortex pair, impinging on a wavy wall, also generates ‘rebounding’ vortex rings. In this case, we observe that the vortex pair interacts first with the ‘hills’ of the wavy wall before the ‘valleys’. The resulting secondary vorticity rolls up into a concentrated vortex tube, ultimately forming a vortex loop along each valley. Each vortex loop pinches off to form a vortex ring, which advects upwards. Surprisingly, these rebounding vortex rings evolve without the strong axial flows fundamental to the wavy vortex case. The present research is relevant to wing tip trailing vortices interacting with a non-uniform ground plane. A non-flat wall is shown to accelerate the decay of the primary vortex pair. Such a passive, ground-based method to diminish the wake vortex hazard close to the ground is consistent with Stephan
et al.
(
J. Aircraft
, vol. 50 (4), 2013
a
, pp. 1250–1260;
CEAS Aeronaut. J.
, vol. 5 (2), 2013
b
, pp. 109–125).</description><subject>Aerodynamics</subject><subject>Aircraft</subject><subject>Axial flow</subject><subject>Experiments</subject><subject>Flat surfaces</subject><subject>Fluid mechanics</subject><subject>Ground plane</subject><subject>Impingement</subject><subject>Reynolds number</subject><subject>Surface stability</subject><subject>Trailing vortices</subject><subject>Valleys</subject><subject>Vehicles</subject><subject>Vortex rings</subject><subject>Vortices</subject><subject>Vorticity</subject><subject>Wavelength</subject><subject>Wing tips</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNotkE1LAzEQhoMoWKs3f8CCV7dOMvlowIsUPwoFL3oO0zQrLd3Nmk2r_fem1MvMYR7m5X0Yu-Uw4cDNw6ZpJwIETITGMzbiUtvaaKnO2QhAiJpzAZfsahg2ABzBmhF7nLf9uvsKbehyFZuKKh93XQ6pTjFTLqdqH1MOv1VP61TFrhA_tD-Usd1es4uGtkO4-d9j9vny_DF7qxfvr_PZ06L2aG2uySOqqSVtSUilvUScroz0WmCwDScylkB5Qrsi6b0RCrSCZrmUuCx1EMfs7vS3T_F7F4bsNnGXuhLphATFLRrBC3V_onyKw5BC4_q0bikdHAd39OOKH3f044of_AOglVcQ</recordid><startdate>20200725</startdate><enddate>20200725</enddate><creator>Morris, Sarah E.</creator><creator>Williamson, C. H. K.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3691-6681</orcidid></search><sort><creationdate>20200725</creationdate><title>Impingement of a counter-rotating vortex pair on a wavy wall</title><author>Morris, Sarah E. ; Williamson, C. H. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-ac33589a69a2456c4338d74c623e9f1aa79a05ca39da4cc7250650fbb43b20233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aerodynamics</topic><topic>Aircraft</topic><topic>Axial flow</topic><topic>Experiments</topic><topic>Flat surfaces</topic><topic>Fluid mechanics</topic><topic>Ground plane</topic><topic>Impingement</topic><topic>Reynolds number</topic><topic>Surface stability</topic><topic>Trailing vortices</topic><topic>Valleys</topic><topic>Vehicles</topic><topic>Vortex rings</topic><topic>Vortices</topic><topic>Vorticity</topic><topic>Wavelength</topic><topic>Wing tips</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morris, Sarah E.</creatorcontrib><creatorcontrib>Williamson, C. H. K.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morris, Sarah E.</au><au>Williamson, C. H. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impingement of a counter-rotating vortex pair on a wavy wall</atitle><jtitle>Journal of fluid mechanics</jtitle><date>2020-07-25</date><risdate>2020</risdate><volume>895</volume><artnum>A25</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>In this paper, we investigate the impingement of a two-dimensional (2-D) vortex pair translating downwards onto a horizontal wall with a wavy surface. A principal purpose is to compare the vortex dynamics with the complementary case of a wavy vortex pair (deformed by the long-wavelength Crow instability) impinging onto a flat surface. The simpler case of a 2-D vortex pair descending onto a flat horizontal ground plane leads to the well known ‘rebound’ effect, wherein the primary vortex pair approaches the wall but subsequently advects vertically upwards, due to the induced velocity of secondary vorticity. In contrast, a wavy vortex pair descending onto a flat plane leads to ‘rebounding’ vorticity in the form of vortex rings. A descending 2-D vortex pair, impinging on a wavy wall, also generates ‘rebounding’ vortex rings. In this case, we observe that the vortex pair interacts first with the ‘hills’ of the wavy wall before the ‘valleys’. The resulting secondary vorticity rolls up into a concentrated vortex tube, ultimately forming a vortex loop along each valley. Each vortex loop pinches off to form a vortex ring, which advects upwards. Surprisingly, these rebounding vortex rings evolve without the strong axial flows fundamental to the wavy vortex case. The present research is relevant to wing tip trailing vortices interacting with a non-uniform ground plane. A non-flat wall is shown to accelerate the decay of the primary vortex pair. Such a passive, ground-based method to diminish the wake vortex hazard close to the ground is consistent with Stephan
et al.
(
J. Aircraft
, vol. 50 (4), 2013
a
, pp. 1250–1260;
CEAS Aeronaut. J.
, vol. 5 (2), 2013
b
, pp. 109–125).</abstract><cop>Cambridge</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2020.263</doi><orcidid>https://orcid.org/0000-0002-3691-6681</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2020-07, Vol.895, Article A25 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_journals_2405193721 |
source | Cambridge University Press Journals Complete |
subjects | Aerodynamics Aircraft Axial flow Experiments Flat surfaces Fluid mechanics Ground plane Impingement Reynolds number Surface stability Trailing vortices Valleys Vehicles Vortex rings Vortices Vorticity Wavelength Wing tips |
title | Impingement of a counter-rotating vortex pair on a wavy wall |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T16%3A56%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impingement%20of%20a%20counter-rotating%20vortex%20pair%20on%20a%20wavy%20wall&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Morris,%20Sarah%20E.&rft.date=2020-07-25&rft.volume=895&rft.artnum=A25&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2020.263&rft_dat=%3Cproquest_cross%3E2405193721%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2405193721&rft_id=info:pmid/&rfr_iscdi=true |