For none, one, or two polarities—How do POLO junctions fit best into industrial Si solar cells?

We present a systematic study on the benefit of the implementation of poly‐Si on oxide (POLO) or related junctions into p‐type industrial Si solar cells as compared with the benchmark of Passivated Emitter and Rear Cell (PERC). We assess three aspects: (a) the simulated efficiency potential of repre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Progress in photovoltaics 2020-06, Vol.28 (6), p.503-516
Hauptverfasser: Peibst, Robby, Kruse, Christian, Schäfer, Sören, Mertens, Verena, Bordihn, Stefan, Dullweber, Thorsten, Haase, Felix, Hollemann, Christina, Lim, Bianca, Min, Byungsul, Niepelt, Raphael, Schulte‐Huxel, Henning, Brendel, Rolf
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 516
container_issue 6
container_start_page 503
container_title Progress in photovoltaics
container_volume 28
creator Peibst, Robby
Kruse, Christian
Schäfer, Sören
Mertens, Verena
Bordihn, Stefan
Dullweber, Thorsten
Haase, Felix
Hollemann, Christina
Lim, Bianca
Min, Byungsul
Niepelt, Raphael
Schulte‐Huxel, Henning
Brendel, Rolf
description We present a systematic study on the benefit of the implementation of poly‐Si on oxide (POLO) or related junctions into p‐type industrial Si solar cells as compared with the benchmark of Passivated Emitter and Rear Cell (PERC). We assess three aspects: (a) the simulated efficiency potential of representative structures with POLO junctions for none (=PERC+), one, and for two polarities; (b) possible lean process flows for their fabrication; and (c) experimental results on major building blocks. Synergistic efficiency gain analysis reveals that the exclusive suppression of the contact recombination for one polarity by POLO only yields moderate efficiency improvements between 0.23%abs and 0.41%abs as compared with PERC+ because of the remaining recombination paths. This problem is solved in a structure that includes POLO junctions for both polarities (POLO2), for whose realization we propose a lean process flow, and for which we experimentally demonstrate the most important building blocks. However, two experimental challenges—alignment tolerances and screen‐print metallization of p+ poly‐Si—are unsolved so far and reduced the efficiency of the “real” POLO2 cell as compared with an idealized scenario. As an intermediate step, we therefore work on a POLO IBC cell with POLO junctions for one polarity. It avoids the abovementioned challenges of the POLO2 structure, can be realized within a lean process flow, and has an efficiency benefit of 1.59%abs as compared with PERC—because not only contact recombination is suppressed but also the entire phosphorus emitter is replaced by an n+ POLO junction.
doi_str_mv 10.1002/pip.3201
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2404633466</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2404633466</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3271-2573fe604b9232d410442b502d4dc77ed9c6bf9c3949a229f1b61b664790c3da3</originalsourceid><addsrcrecordid>eNp1kM1KAzEUhYMoWKvgIwTcuHBq_iYxK5FibaHQggruQiaTgZRxMiYzlO58CJ_QJzHjuBUu557Fd384AFxiNMMIkdvWtTNKED4CE4ykzHAu344Hz0kmpMxPwVmMO4SwuJN8AvTCB9j4xt7AUQLs9h62vtbBdc7G78-vpd_D0sPtZr2Bu74xnfNNhJXrYGFjB13T-SRlH7vgdA2fHYzDODS2ruP9OTipdB3txV-fgtfF48t8ma03T6v5wzozlAickVzQynLECkkoKRlGjJEiR8mWRghbSsOLShoqmdSEyAoXPBVnQiJDS02n4Grc2wb_0afH1M73oUknFWGIcUoZ54m6HikTfIzBVqoN7l2Hg8JIDQGqFKAaAkxoNqJ7V9vDv5zarra__A_uOnEn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2404633466</pqid></control><display><type>article</type><title>For none, one, or two polarities—How do POLO junctions fit best into industrial Si solar cells?</title><source>Access via Wiley Online Library</source><creator>Peibst, Robby ; Kruse, Christian ; Schäfer, Sören ; Mertens, Verena ; Bordihn, Stefan ; Dullweber, Thorsten ; Haase, Felix ; Hollemann, Christina ; Lim, Bianca ; Min, Byungsul ; Niepelt, Raphael ; Schulte‐Huxel, Henning ; Brendel, Rolf</creator><creatorcontrib>Peibst, Robby ; Kruse, Christian ; Schäfer, Sören ; Mertens, Verena ; Bordihn, Stefan ; Dullweber, Thorsten ; Haase, Felix ; Hollemann, Christina ; Lim, Bianca ; Min, Byungsul ; Niepelt, Raphael ; Schulte‐Huxel, Henning ; Brendel, Rolf</creatorcontrib><description>We present a systematic study on the benefit of the implementation of poly‐Si on oxide (POLO) or related junctions into p‐type industrial Si solar cells as compared with the benchmark of Passivated Emitter and Rear Cell (PERC). We assess three aspects: (a) the simulated efficiency potential of representative structures with POLO junctions for none (=PERC+), one, and for two polarities; (b) possible lean process flows for their fabrication; and (c) experimental results on major building blocks. Synergistic efficiency gain analysis reveals that the exclusive suppression of the contact recombination for one polarity by POLO only yields moderate efficiency improvements between 0.23%abs and 0.41%abs as compared with PERC+ because of the remaining recombination paths. This problem is solved in a structure that includes POLO junctions for both polarities (POLO2), for whose realization we propose a lean process flow, and for which we experimentally demonstrate the most important building blocks. However, two experimental challenges—alignment tolerances and screen‐print metallization of p+ poly‐Si—are unsolved so far and reduced the efficiency of the “real” POLO2 cell as compared with an idealized scenario. As an intermediate step, we therefore work on a POLO IBC cell with POLO junctions for one polarity. It avoids the abovementioned challenges of the POLO2 structure, can be realized within a lean process flow, and has an efficiency benefit of 1.59%abs as compared with PERC—because not only contact recombination is suppressed but also the entire phosphorus emitter is replaced by an n+ POLO junction.</description><identifier>ISSN: 1062-7995</identifier><identifier>EISSN: 1099-159X</identifier><identifier>DOI: 10.1002/pip.3201</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Efficiency ; efficiency potential ; Emitters ; Metallizing ; passivating contacts ; Photovoltaic cells ; Polarity ; POLO ; poly‐Si ; solar cell development ; Solar cells ; Tolerances</subject><ispartof>Progress in photovoltaics, 2020-06, Vol.28 (6), p.503-516</ispartof><rights>2019 The Authors. Progress in Photovoltaics: Research and Applications published by John Wiley &amp; Sons Ltd.</rights><rights>2019. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3271-2573fe604b9232d410442b502d4dc77ed9c6bf9c3949a229f1b61b664790c3da3</citedby><cites>FETCH-LOGICAL-c3271-2573fe604b9232d410442b502d4dc77ed9c6bf9c3949a229f1b61b664790c3da3</cites><orcidid>0000-0001-7077-7905 ; 0000-0003-4785-0080 ; 0000-0001-8769-9392</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpip.3201$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpip.3201$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Peibst, Robby</creatorcontrib><creatorcontrib>Kruse, Christian</creatorcontrib><creatorcontrib>Schäfer, Sören</creatorcontrib><creatorcontrib>Mertens, Verena</creatorcontrib><creatorcontrib>Bordihn, Stefan</creatorcontrib><creatorcontrib>Dullweber, Thorsten</creatorcontrib><creatorcontrib>Haase, Felix</creatorcontrib><creatorcontrib>Hollemann, Christina</creatorcontrib><creatorcontrib>Lim, Bianca</creatorcontrib><creatorcontrib>Min, Byungsul</creatorcontrib><creatorcontrib>Niepelt, Raphael</creatorcontrib><creatorcontrib>Schulte‐Huxel, Henning</creatorcontrib><creatorcontrib>Brendel, Rolf</creatorcontrib><title>For none, one, or two polarities—How do POLO junctions fit best into industrial Si solar cells?</title><title>Progress in photovoltaics</title><description>We present a systematic study on the benefit of the implementation of poly‐Si on oxide (POLO) or related junctions into p‐type industrial Si solar cells as compared with the benchmark of Passivated Emitter and Rear Cell (PERC). We assess three aspects: (a) the simulated efficiency potential of representative structures with POLO junctions for none (=PERC+), one, and for two polarities; (b) possible lean process flows for their fabrication; and (c) experimental results on major building blocks. Synergistic efficiency gain analysis reveals that the exclusive suppression of the contact recombination for one polarity by POLO only yields moderate efficiency improvements between 0.23%abs and 0.41%abs as compared with PERC+ because of the remaining recombination paths. This problem is solved in a structure that includes POLO junctions for both polarities (POLO2), for whose realization we propose a lean process flow, and for which we experimentally demonstrate the most important building blocks. However, two experimental challenges—alignment tolerances and screen‐print metallization of p+ poly‐Si—are unsolved so far and reduced the efficiency of the “real” POLO2 cell as compared with an idealized scenario. As an intermediate step, we therefore work on a POLO IBC cell with POLO junctions for one polarity. It avoids the abovementioned challenges of the POLO2 structure, can be realized within a lean process flow, and has an efficiency benefit of 1.59%abs as compared with PERC—because not only contact recombination is suppressed but also the entire phosphorus emitter is replaced by an n+ POLO junction.</description><subject>Efficiency</subject><subject>efficiency potential</subject><subject>Emitters</subject><subject>Metallizing</subject><subject>passivating contacts</subject><subject>Photovoltaic cells</subject><subject>Polarity</subject><subject>POLO</subject><subject>poly‐Si</subject><subject>solar cell development</subject><subject>Solar cells</subject><subject>Tolerances</subject><issn>1062-7995</issn><issn>1099-159X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp1kM1KAzEUhYMoWKvgIwTcuHBq_iYxK5FibaHQggruQiaTgZRxMiYzlO58CJ_QJzHjuBUu557Fd384AFxiNMMIkdvWtTNKED4CE4ykzHAu344Hz0kmpMxPwVmMO4SwuJN8AvTCB9j4xt7AUQLs9h62vtbBdc7G78-vpd_D0sPtZr2Bu74xnfNNhJXrYGFjB13T-SRlH7vgdA2fHYzDODS2ruP9OTipdB3txV-fgtfF48t8ma03T6v5wzozlAickVzQynLECkkoKRlGjJEiR8mWRghbSsOLShoqmdSEyAoXPBVnQiJDS02n4Grc2wb_0afH1M73oUknFWGIcUoZ54m6HikTfIzBVqoN7l2Hg8JIDQGqFKAaAkxoNqJ7V9vDv5zarra__A_uOnEn</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Peibst, Robby</creator><creator>Kruse, Christian</creator><creator>Schäfer, Sören</creator><creator>Mertens, Verena</creator><creator>Bordihn, Stefan</creator><creator>Dullweber, Thorsten</creator><creator>Haase, Felix</creator><creator>Hollemann, Christina</creator><creator>Lim, Bianca</creator><creator>Min, Byungsul</creator><creator>Niepelt, Raphael</creator><creator>Schulte‐Huxel, Henning</creator><creator>Brendel, Rolf</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7077-7905</orcidid><orcidid>https://orcid.org/0000-0003-4785-0080</orcidid><orcidid>https://orcid.org/0000-0001-8769-9392</orcidid></search><sort><creationdate>202006</creationdate><title>For none, one, or two polarities—How do POLO junctions fit best into industrial Si solar cells?</title><author>Peibst, Robby ; Kruse, Christian ; Schäfer, Sören ; Mertens, Verena ; Bordihn, Stefan ; Dullweber, Thorsten ; Haase, Felix ; Hollemann, Christina ; Lim, Bianca ; Min, Byungsul ; Niepelt, Raphael ; Schulte‐Huxel, Henning ; Brendel, Rolf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3271-2573fe604b9232d410442b502d4dc77ed9c6bf9c3949a229f1b61b664790c3da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Efficiency</topic><topic>efficiency potential</topic><topic>Emitters</topic><topic>Metallizing</topic><topic>passivating contacts</topic><topic>Photovoltaic cells</topic><topic>Polarity</topic><topic>POLO</topic><topic>poly‐Si</topic><topic>solar cell development</topic><topic>Solar cells</topic><topic>Tolerances</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peibst, Robby</creatorcontrib><creatorcontrib>Kruse, Christian</creatorcontrib><creatorcontrib>Schäfer, Sören</creatorcontrib><creatorcontrib>Mertens, Verena</creatorcontrib><creatorcontrib>Bordihn, Stefan</creatorcontrib><creatorcontrib>Dullweber, Thorsten</creatorcontrib><creatorcontrib>Haase, Felix</creatorcontrib><creatorcontrib>Hollemann, Christina</creatorcontrib><creatorcontrib>Lim, Bianca</creatorcontrib><creatorcontrib>Min, Byungsul</creatorcontrib><creatorcontrib>Niepelt, Raphael</creatorcontrib><creatorcontrib>Schulte‐Huxel, Henning</creatorcontrib><creatorcontrib>Brendel, Rolf</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Progress in photovoltaics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peibst, Robby</au><au>Kruse, Christian</au><au>Schäfer, Sören</au><au>Mertens, Verena</au><au>Bordihn, Stefan</au><au>Dullweber, Thorsten</au><au>Haase, Felix</au><au>Hollemann, Christina</au><au>Lim, Bianca</au><au>Min, Byungsul</au><au>Niepelt, Raphael</au><au>Schulte‐Huxel, Henning</au><au>Brendel, Rolf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>For none, one, or two polarities—How do POLO junctions fit best into industrial Si solar cells?</atitle><jtitle>Progress in photovoltaics</jtitle><date>2020-06</date><risdate>2020</risdate><volume>28</volume><issue>6</issue><spage>503</spage><epage>516</epage><pages>503-516</pages><issn>1062-7995</issn><eissn>1099-159X</eissn><abstract>We present a systematic study on the benefit of the implementation of poly‐Si on oxide (POLO) or related junctions into p‐type industrial Si solar cells as compared with the benchmark of Passivated Emitter and Rear Cell (PERC). We assess three aspects: (a) the simulated efficiency potential of representative structures with POLO junctions for none (=PERC+), one, and for two polarities; (b) possible lean process flows for their fabrication; and (c) experimental results on major building blocks. Synergistic efficiency gain analysis reveals that the exclusive suppression of the contact recombination for one polarity by POLO only yields moderate efficiency improvements between 0.23%abs and 0.41%abs as compared with PERC+ because of the remaining recombination paths. This problem is solved in a structure that includes POLO junctions for both polarities (POLO2), for whose realization we propose a lean process flow, and for which we experimentally demonstrate the most important building blocks. However, two experimental challenges—alignment tolerances and screen‐print metallization of p+ poly‐Si—are unsolved so far and reduced the efficiency of the “real” POLO2 cell as compared with an idealized scenario. As an intermediate step, we therefore work on a POLO IBC cell with POLO junctions for one polarity. It avoids the abovementioned challenges of the POLO2 structure, can be realized within a lean process flow, and has an efficiency benefit of 1.59%abs as compared with PERC—because not only contact recombination is suppressed but also the entire phosphorus emitter is replaced by an n+ POLO junction.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pip.3201</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7077-7905</orcidid><orcidid>https://orcid.org/0000-0003-4785-0080</orcidid><orcidid>https://orcid.org/0000-0001-8769-9392</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1062-7995
ispartof Progress in photovoltaics, 2020-06, Vol.28 (6), p.503-516
issn 1062-7995
1099-159X
language eng
recordid cdi_proquest_journals_2404633466
source Access via Wiley Online Library
subjects Efficiency
efficiency potential
Emitters
Metallizing
passivating contacts
Photovoltaic cells
Polarity
POLO
poly‐Si
solar cell development
Solar cells
Tolerances
title For none, one, or two polarities—How do POLO junctions fit best into industrial Si solar cells?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A16%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=For%20none,%20one,%20or%20two%20polarities%E2%80%94How%20do%20POLO%20junctions%20fit%20best%20into%20industrial%20Si%20solar%20cells?&rft.jtitle=Progress%20in%20photovoltaics&rft.au=Peibst,%20Robby&rft.date=2020-06&rft.volume=28&rft.issue=6&rft.spage=503&rft.epage=516&rft.pages=503-516&rft.issn=1062-7995&rft.eissn=1099-159X&rft_id=info:doi/10.1002/pip.3201&rft_dat=%3Cproquest_cross%3E2404633466%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2404633466&rft_id=info:pmid/&rfr_iscdi=true