For none, one, or two polarities—How do POLO junctions fit best into industrial Si solar cells?
We present a systematic study on the benefit of the implementation of poly‐Si on oxide (POLO) or related junctions into p‐type industrial Si solar cells as compared with the benchmark of Passivated Emitter and Rear Cell (PERC). We assess three aspects: (a) the simulated efficiency potential of repre...
Gespeichert in:
Veröffentlicht in: | Progress in photovoltaics 2020-06, Vol.28 (6), p.503-516 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 516 |
---|---|
container_issue | 6 |
container_start_page | 503 |
container_title | Progress in photovoltaics |
container_volume | 28 |
creator | Peibst, Robby Kruse, Christian Schäfer, Sören Mertens, Verena Bordihn, Stefan Dullweber, Thorsten Haase, Felix Hollemann, Christina Lim, Bianca Min, Byungsul Niepelt, Raphael Schulte‐Huxel, Henning Brendel, Rolf |
description | We present a systematic study on the benefit of the implementation of poly‐Si on oxide (POLO) or related junctions into p‐type industrial Si solar cells as compared with the benchmark of Passivated Emitter and Rear Cell (PERC). We assess three aspects: (a) the simulated efficiency potential of representative structures with POLO junctions for none (=PERC+), one, and for two polarities; (b) possible lean process flows for their fabrication; and (c) experimental results on major building blocks. Synergistic efficiency gain analysis reveals that the exclusive suppression of the contact recombination for one polarity by POLO only yields moderate efficiency improvements between 0.23%abs and 0.41%abs as compared with PERC+ because of the remaining recombination paths. This problem is solved in a structure that includes POLO junctions for both polarities (POLO2), for whose realization we propose a lean process flow, and for which we experimentally demonstrate the most important building blocks. However, two experimental challenges—alignment tolerances and screen‐print metallization of p+ poly‐Si—are unsolved so far and reduced the efficiency of the “real” POLO2 cell as compared with an idealized scenario. As an intermediate step, we therefore work on a POLO IBC cell with POLO junctions for one polarity. It avoids the abovementioned challenges of the POLO2 structure, can be realized within a lean process flow, and has an efficiency benefit of 1.59%abs as compared with PERC—because not only contact recombination is suppressed but also the entire phosphorus emitter is replaced by an n+ POLO junction. |
doi_str_mv | 10.1002/pip.3201 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2404633466</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2404633466</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3271-2573fe604b9232d410442b502d4dc77ed9c6bf9c3949a229f1b61b664790c3da3</originalsourceid><addsrcrecordid>eNp1kM1KAzEUhYMoWKvgIwTcuHBq_iYxK5FibaHQggruQiaTgZRxMiYzlO58CJ_QJzHjuBUu557Fd384AFxiNMMIkdvWtTNKED4CE4ykzHAu344Hz0kmpMxPwVmMO4SwuJN8AvTCB9j4xt7AUQLs9h62vtbBdc7G78-vpd_D0sPtZr2Bu74xnfNNhJXrYGFjB13T-SRlH7vgdA2fHYzDODS2ruP9OTipdB3txV-fgtfF48t8ma03T6v5wzozlAickVzQynLECkkoKRlGjJEiR8mWRghbSsOLShoqmdSEyAoXPBVnQiJDS02n4Grc2wb_0afH1M73oUknFWGIcUoZ54m6HikTfIzBVqoN7l2Hg8JIDQGqFKAaAkxoNqJ7V9vDv5zarra__A_uOnEn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2404633466</pqid></control><display><type>article</type><title>For none, one, or two polarities—How do POLO junctions fit best into industrial Si solar cells?</title><source>Access via Wiley Online Library</source><creator>Peibst, Robby ; Kruse, Christian ; Schäfer, Sören ; Mertens, Verena ; Bordihn, Stefan ; Dullweber, Thorsten ; Haase, Felix ; Hollemann, Christina ; Lim, Bianca ; Min, Byungsul ; Niepelt, Raphael ; Schulte‐Huxel, Henning ; Brendel, Rolf</creator><creatorcontrib>Peibst, Robby ; Kruse, Christian ; Schäfer, Sören ; Mertens, Verena ; Bordihn, Stefan ; Dullweber, Thorsten ; Haase, Felix ; Hollemann, Christina ; Lim, Bianca ; Min, Byungsul ; Niepelt, Raphael ; Schulte‐Huxel, Henning ; Brendel, Rolf</creatorcontrib><description>We present a systematic study on the benefit of the implementation of poly‐Si on oxide (POLO) or related junctions into p‐type industrial Si solar cells as compared with the benchmark of Passivated Emitter and Rear Cell (PERC). We assess three aspects: (a) the simulated efficiency potential of representative structures with POLO junctions for none (=PERC+), one, and for two polarities; (b) possible lean process flows for their fabrication; and (c) experimental results on major building blocks. Synergistic efficiency gain analysis reveals that the exclusive suppression of the contact recombination for one polarity by POLO only yields moderate efficiency improvements between 0.23%abs and 0.41%abs as compared with PERC+ because of the remaining recombination paths. This problem is solved in a structure that includes POLO junctions for both polarities (POLO2), for whose realization we propose a lean process flow, and for which we experimentally demonstrate the most important building blocks. However, two experimental challenges—alignment tolerances and screen‐print metallization of p+ poly‐Si—are unsolved so far and reduced the efficiency of the “real” POLO2 cell as compared with an idealized scenario. As an intermediate step, we therefore work on a POLO IBC cell with POLO junctions for one polarity. It avoids the abovementioned challenges of the POLO2 structure, can be realized within a lean process flow, and has an efficiency benefit of 1.59%abs as compared with PERC—because not only contact recombination is suppressed but also the entire phosphorus emitter is replaced by an n+ POLO junction.</description><identifier>ISSN: 1062-7995</identifier><identifier>EISSN: 1099-159X</identifier><identifier>DOI: 10.1002/pip.3201</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Efficiency ; efficiency potential ; Emitters ; Metallizing ; passivating contacts ; Photovoltaic cells ; Polarity ; POLO ; poly‐Si ; solar cell development ; Solar cells ; Tolerances</subject><ispartof>Progress in photovoltaics, 2020-06, Vol.28 (6), p.503-516</ispartof><rights>2019 The Authors. Progress in Photovoltaics: Research and Applications published by John Wiley & Sons Ltd.</rights><rights>2019. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3271-2573fe604b9232d410442b502d4dc77ed9c6bf9c3949a229f1b61b664790c3da3</citedby><cites>FETCH-LOGICAL-c3271-2573fe604b9232d410442b502d4dc77ed9c6bf9c3949a229f1b61b664790c3da3</cites><orcidid>0000-0001-7077-7905 ; 0000-0003-4785-0080 ; 0000-0001-8769-9392</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpip.3201$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpip.3201$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Peibst, Robby</creatorcontrib><creatorcontrib>Kruse, Christian</creatorcontrib><creatorcontrib>Schäfer, Sören</creatorcontrib><creatorcontrib>Mertens, Verena</creatorcontrib><creatorcontrib>Bordihn, Stefan</creatorcontrib><creatorcontrib>Dullweber, Thorsten</creatorcontrib><creatorcontrib>Haase, Felix</creatorcontrib><creatorcontrib>Hollemann, Christina</creatorcontrib><creatorcontrib>Lim, Bianca</creatorcontrib><creatorcontrib>Min, Byungsul</creatorcontrib><creatorcontrib>Niepelt, Raphael</creatorcontrib><creatorcontrib>Schulte‐Huxel, Henning</creatorcontrib><creatorcontrib>Brendel, Rolf</creatorcontrib><title>For none, one, or two polarities—How do POLO junctions fit best into industrial Si solar cells?</title><title>Progress in photovoltaics</title><description>We present a systematic study on the benefit of the implementation of poly‐Si on oxide (POLO) or related junctions into p‐type industrial Si solar cells as compared with the benchmark of Passivated Emitter and Rear Cell (PERC). We assess three aspects: (a) the simulated efficiency potential of representative structures with POLO junctions for none (=PERC+), one, and for two polarities; (b) possible lean process flows for their fabrication; and (c) experimental results on major building blocks. Synergistic efficiency gain analysis reveals that the exclusive suppression of the contact recombination for one polarity by POLO only yields moderate efficiency improvements between 0.23%abs and 0.41%abs as compared with PERC+ because of the remaining recombination paths. This problem is solved in a structure that includes POLO junctions for both polarities (POLO2), for whose realization we propose a lean process flow, and for which we experimentally demonstrate the most important building blocks. However, two experimental challenges—alignment tolerances and screen‐print metallization of p+ poly‐Si—are unsolved so far and reduced the efficiency of the “real” POLO2 cell as compared with an idealized scenario. As an intermediate step, we therefore work on a POLO IBC cell with POLO junctions for one polarity. It avoids the abovementioned challenges of the POLO2 structure, can be realized within a lean process flow, and has an efficiency benefit of 1.59%abs as compared with PERC—because not only contact recombination is suppressed but also the entire phosphorus emitter is replaced by an n+ POLO junction.</description><subject>Efficiency</subject><subject>efficiency potential</subject><subject>Emitters</subject><subject>Metallizing</subject><subject>passivating contacts</subject><subject>Photovoltaic cells</subject><subject>Polarity</subject><subject>POLO</subject><subject>poly‐Si</subject><subject>solar cell development</subject><subject>Solar cells</subject><subject>Tolerances</subject><issn>1062-7995</issn><issn>1099-159X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp1kM1KAzEUhYMoWKvgIwTcuHBq_iYxK5FibaHQggruQiaTgZRxMiYzlO58CJ_QJzHjuBUu557Fd384AFxiNMMIkdvWtTNKED4CE4ykzHAu344Hz0kmpMxPwVmMO4SwuJN8AvTCB9j4xt7AUQLs9h62vtbBdc7G78-vpd_D0sPtZr2Bu74xnfNNhJXrYGFjB13T-SRlH7vgdA2fHYzDODS2ruP9OTipdB3txV-fgtfF48t8ma03T6v5wzozlAickVzQynLECkkoKRlGjJEiR8mWRghbSsOLShoqmdSEyAoXPBVnQiJDS02n4Grc2wb_0afH1M73oUknFWGIcUoZ54m6HikTfIzBVqoN7l2Hg8JIDQGqFKAaAkxoNqJ7V9vDv5zarra__A_uOnEn</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Peibst, Robby</creator><creator>Kruse, Christian</creator><creator>Schäfer, Sören</creator><creator>Mertens, Verena</creator><creator>Bordihn, Stefan</creator><creator>Dullweber, Thorsten</creator><creator>Haase, Felix</creator><creator>Hollemann, Christina</creator><creator>Lim, Bianca</creator><creator>Min, Byungsul</creator><creator>Niepelt, Raphael</creator><creator>Schulte‐Huxel, Henning</creator><creator>Brendel, Rolf</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7077-7905</orcidid><orcidid>https://orcid.org/0000-0003-4785-0080</orcidid><orcidid>https://orcid.org/0000-0001-8769-9392</orcidid></search><sort><creationdate>202006</creationdate><title>For none, one, or two polarities—How do POLO junctions fit best into industrial Si solar cells?</title><author>Peibst, Robby ; Kruse, Christian ; Schäfer, Sören ; Mertens, Verena ; Bordihn, Stefan ; Dullweber, Thorsten ; Haase, Felix ; Hollemann, Christina ; Lim, Bianca ; Min, Byungsul ; Niepelt, Raphael ; Schulte‐Huxel, Henning ; Brendel, Rolf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3271-2573fe604b9232d410442b502d4dc77ed9c6bf9c3949a229f1b61b664790c3da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Efficiency</topic><topic>efficiency potential</topic><topic>Emitters</topic><topic>Metallizing</topic><topic>passivating contacts</topic><topic>Photovoltaic cells</topic><topic>Polarity</topic><topic>POLO</topic><topic>poly‐Si</topic><topic>solar cell development</topic><topic>Solar cells</topic><topic>Tolerances</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peibst, Robby</creatorcontrib><creatorcontrib>Kruse, Christian</creatorcontrib><creatorcontrib>Schäfer, Sören</creatorcontrib><creatorcontrib>Mertens, Verena</creatorcontrib><creatorcontrib>Bordihn, Stefan</creatorcontrib><creatorcontrib>Dullweber, Thorsten</creatorcontrib><creatorcontrib>Haase, Felix</creatorcontrib><creatorcontrib>Hollemann, Christina</creatorcontrib><creatorcontrib>Lim, Bianca</creatorcontrib><creatorcontrib>Min, Byungsul</creatorcontrib><creatorcontrib>Niepelt, Raphael</creatorcontrib><creatorcontrib>Schulte‐Huxel, Henning</creatorcontrib><creatorcontrib>Brendel, Rolf</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Progress in photovoltaics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peibst, Robby</au><au>Kruse, Christian</au><au>Schäfer, Sören</au><au>Mertens, Verena</au><au>Bordihn, Stefan</au><au>Dullweber, Thorsten</au><au>Haase, Felix</au><au>Hollemann, Christina</au><au>Lim, Bianca</au><au>Min, Byungsul</au><au>Niepelt, Raphael</au><au>Schulte‐Huxel, Henning</au><au>Brendel, Rolf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>For none, one, or two polarities—How do POLO junctions fit best into industrial Si solar cells?</atitle><jtitle>Progress in photovoltaics</jtitle><date>2020-06</date><risdate>2020</risdate><volume>28</volume><issue>6</issue><spage>503</spage><epage>516</epage><pages>503-516</pages><issn>1062-7995</issn><eissn>1099-159X</eissn><abstract>We present a systematic study on the benefit of the implementation of poly‐Si on oxide (POLO) or related junctions into p‐type industrial Si solar cells as compared with the benchmark of Passivated Emitter and Rear Cell (PERC). We assess three aspects: (a) the simulated efficiency potential of representative structures with POLO junctions for none (=PERC+), one, and for two polarities; (b) possible lean process flows for their fabrication; and (c) experimental results on major building blocks. Synergistic efficiency gain analysis reveals that the exclusive suppression of the contact recombination for one polarity by POLO only yields moderate efficiency improvements between 0.23%abs and 0.41%abs as compared with PERC+ because of the remaining recombination paths. This problem is solved in a structure that includes POLO junctions for both polarities (POLO2), for whose realization we propose a lean process flow, and for which we experimentally demonstrate the most important building blocks. However, two experimental challenges—alignment tolerances and screen‐print metallization of p+ poly‐Si—are unsolved so far and reduced the efficiency of the “real” POLO2 cell as compared with an idealized scenario. As an intermediate step, we therefore work on a POLO IBC cell with POLO junctions for one polarity. It avoids the abovementioned challenges of the POLO2 structure, can be realized within a lean process flow, and has an efficiency benefit of 1.59%abs as compared with PERC—because not only contact recombination is suppressed but also the entire phosphorus emitter is replaced by an n+ POLO junction.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pip.3201</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7077-7905</orcidid><orcidid>https://orcid.org/0000-0003-4785-0080</orcidid><orcidid>https://orcid.org/0000-0001-8769-9392</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1062-7995 |
ispartof | Progress in photovoltaics, 2020-06, Vol.28 (6), p.503-516 |
issn | 1062-7995 1099-159X |
language | eng |
recordid | cdi_proquest_journals_2404633466 |
source | Access via Wiley Online Library |
subjects | Efficiency efficiency potential Emitters Metallizing passivating contacts Photovoltaic cells Polarity POLO poly‐Si solar cell development Solar cells Tolerances |
title | For none, one, or two polarities—How do POLO junctions fit best into industrial Si solar cells? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A16%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=For%20none,%20one,%20or%20two%20polarities%E2%80%94How%20do%20POLO%20junctions%20fit%20best%20into%20industrial%20Si%20solar%20cells?&rft.jtitle=Progress%20in%20photovoltaics&rft.au=Peibst,%20Robby&rft.date=2020-06&rft.volume=28&rft.issue=6&rft.spage=503&rft.epage=516&rft.pages=503-516&rft.issn=1062-7995&rft.eissn=1099-159X&rft_id=info:doi/10.1002/pip.3201&rft_dat=%3Cproquest_cross%3E2404633466%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2404633466&rft_id=info:pmid/&rfr_iscdi=true |