Bimetal Schottky Heterojunction Boosting Energy‐Saving Hydrogen Production from Alkaline Water via Urea Electrocatalysis

Hydrogen production via water electrocatalysis is limited by the sluggish anodic oxygen evolution reaction (OER) that requires a high overpotential. In response, a urea‐assisted energy‐saving alkaline hydrogen‐production system has been investigated by replacing OER with a more oxidizable urea oxida...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2020-05, Vol.30 (21), p.n/a
Hauptverfasser: Wang, Chao, Lu, Haoliang, Mao, Zeyang, Yan, Chenglin, Shen, Guozhen, Wang, Xianfu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 21
container_start_page
container_title Advanced functional materials
container_volume 30
creator Wang, Chao
Lu, Haoliang
Mao, Zeyang
Yan, Chenglin
Shen, Guozhen
Wang, Xianfu
description Hydrogen production via water electrocatalysis is limited by the sluggish anodic oxygen evolution reaction (OER) that requires a high overpotential. In response, a urea‐assisted energy‐saving alkaline hydrogen‐production system has been investigated by replacing OER with a more oxidizable urea oxidation reaction (UOR). A bimetal heterostructure CoMn/CoMn2O4 as a bifunctional catalyst is constructed in an alkaline system for both urea oxidation and hydrogen evolution reaction (HER). Based on the Schottky heterojunction structure, CoMn/CoMn2O4 induces self‐driven charge transfer at the interface, which facilitates the absorption of reactant molecules and the fracture of chemical bonds, therefore triggering the decomposition of water and urea. As a result, the heterostructured electrode exhibits ultralow potentials of −0.069 and 1.32 V (vs reversible hydrogen electrode) to reach 10 mA cm−2 for HER and UOR, respectively, in alkaline solution, and the full urea electrolysis driven by CoMn/CoMn2O4 delivers 10 mA cm−2 at a relatively low potential of 1.51 V and performs stably for more than 15 h. This represents a novel strategy of Mott–Schottky hybrids in electrocatalysts and should inspire the development of sustainable energy conversion by combining hydrogen production and sewage treatment. A Schottky catalyst is constructed from a CoMn/CoMn2O4 heterostructure for energy‐saving hydrogen production from alkaline solution via urea electrocatalysis. Benefiting from the interface electron redistribution, CoMn/CoMn2O4 can synergistically facilitate the adsorption and fracture of the chemical groups in urea and water molecules and thus promote urea electrocatalysis.
doi_str_mv 10.1002/adfm.202000556
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2404564658</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2404564658</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4206-ad712628a240b45779c7e595f0d699ba78555ef3faa2b604f597e8886d1d1f053</originalsourceid><addsrcrecordid>eNqFkEFPwjAcxRejiYhePTfxDLbd2m5HQBATjCZI9NaUrcXCtmLbYebJj-Bn9JM4MoNHT__3T37vveQFwSWCfQQhvhaZKvoYYgghIfQo6CCKaC-EOD4-aPRyGpw5t4YQMRZGneBjqAvpRQ7m6avxflODqfTSmnVVpl6bEgyNcV6XKzAupV3V359fc7Hb_9M6s2YlS_BoTVa1sLKmAIN8I3JdSvAsmiSw0wIsrBRgnMvUW5OKpq522p0HJ0rkTl783m6wmIyfRtPe7OH2bjSY9dIIQ9oTGUOY4ljgCC4jwliSMkkSomBGk2QpWEwIkSpUQuAlhZEiCZNxHNMMZUhBEnaDqzZ3a81bJZ3na1PZsqnkTWREaERJ3FD9lkqtcc5KxbdWF8LWHEG-35fv9-WHfRtD0hredS7rf2g-uJnc_3l_AMdDgZU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2404564658</pqid></control><display><type>article</type><title>Bimetal Schottky Heterojunction Boosting Energy‐Saving Hydrogen Production from Alkaline Water via Urea Electrocatalysis</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Wang, Chao ; Lu, Haoliang ; Mao, Zeyang ; Yan, Chenglin ; Shen, Guozhen ; Wang, Xianfu</creator><creatorcontrib>Wang, Chao ; Lu, Haoliang ; Mao, Zeyang ; Yan, Chenglin ; Shen, Guozhen ; Wang, Xianfu</creatorcontrib><description>Hydrogen production via water electrocatalysis is limited by the sluggish anodic oxygen evolution reaction (OER) that requires a high overpotential. In response, a urea‐assisted energy‐saving alkaline hydrogen‐production system has been investigated by replacing OER with a more oxidizable urea oxidation reaction (UOR). A bimetal heterostructure CoMn/CoMn2O4 as a bifunctional catalyst is constructed in an alkaline system for both urea oxidation and hydrogen evolution reaction (HER). Based on the Schottky heterojunction structure, CoMn/CoMn2O4 induces self‐driven charge transfer at the interface, which facilitates the absorption of reactant molecules and the fracture of chemical bonds, therefore triggering the decomposition of water and urea. As a result, the heterostructured electrode exhibits ultralow potentials of −0.069 and 1.32 V (vs reversible hydrogen electrode) to reach 10 mA cm−2 for HER and UOR, respectively, in alkaline solution, and the full urea electrolysis driven by CoMn/CoMn2O4 delivers 10 mA cm−2 at a relatively low potential of 1.51 V and performs stably for more than 15 h. This represents a novel strategy of Mott–Schottky hybrids in electrocatalysts and should inspire the development of sustainable energy conversion by combining hydrogen production and sewage treatment. A Schottky catalyst is constructed from a CoMn/CoMn2O4 heterostructure for energy‐saving hydrogen production from alkaline solution via urea electrocatalysis. Benefiting from the interface electron redistribution, CoMn/CoMn2O4 can synergistically facilitate the adsorption and fracture of the chemical groups in urea and water molecules and thus promote urea electrocatalysis.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202000556</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>bimetal catalysis ; Bimetals ; Charge transfer ; Chemical bonds ; Cobalt compounds ; Electrocatalysis ; Electrocatalysts ; electrochemical turning ; Electrodes ; Electrolysis ; Energy conservation ; Energy conversion ; Heterojunctions ; Heterostructures ; Hydrogen ; hydrogen evolution ; Hydrogen evolution reactions ; Hydrogen production ; Hydrogen-based energy ; Materials science ; Oxidation ; Oxygen evolution reactions ; Schottky heterojunctions ; Sustainable development ; urea oxidation ; Ureas</subject><ispartof>Advanced functional materials, 2020-05, Vol.30 (21), p.n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4206-ad712628a240b45779c7e595f0d699ba78555ef3faa2b604f597e8886d1d1f053</citedby><cites>FETCH-LOGICAL-c4206-ad712628a240b45779c7e595f0d699ba78555ef3faa2b604f597e8886d1d1f053</cites><orcidid>0000-0002-9755-1647</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202000556$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202000556$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Wang, Chao</creatorcontrib><creatorcontrib>Lu, Haoliang</creatorcontrib><creatorcontrib>Mao, Zeyang</creatorcontrib><creatorcontrib>Yan, Chenglin</creatorcontrib><creatorcontrib>Shen, Guozhen</creatorcontrib><creatorcontrib>Wang, Xianfu</creatorcontrib><title>Bimetal Schottky Heterojunction Boosting Energy‐Saving Hydrogen Production from Alkaline Water via Urea Electrocatalysis</title><title>Advanced functional materials</title><description>Hydrogen production via water electrocatalysis is limited by the sluggish anodic oxygen evolution reaction (OER) that requires a high overpotential. In response, a urea‐assisted energy‐saving alkaline hydrogen‐production system has been investigated by replacing OER with a more oxidizable urea oxidation reaction (UOR). A bimetal heterostructure CoMn/CoMn2O4 as a bifunctional catalyst is constructed in an alkaline system for both urea oxidation and hydrogen evolution reaction (HER). Based on the Schottky heterojunction structure, CoMn/CoMn2O4 induces self‐driven charge transfer at the interface, which facilitates the absorption of reactant molecules and the fracture of chemical bonds, therefore triggering the decomposition of water and urea. As a result, the heterostructured electrode exhibits ultralow potentials of −0.069 and 1.32 V (vs reversible hydrogen electrode) to reach 10 mA cm−2 for HER and UOR, respectively, in alkaline solution, and the full urea electrolysis driven by CoMn/CoMn2O4 delivers 10 mA cm−2 at a relatively low potential of 1.51 V and performs stably for more than 15 h. This represents a novel strategy of Mott–Schottky hybrids in electrocatalysts and should inspire the development of sustainable energy conversion by combining hydrogen production and sewage treatment. A Schottky catalyst is constructed from a CoMn/CoMn2O4 heterostructure for energy‐saving hydrogen production from alkaline solution via urea electrocatalysis. Benefiting from the interface electron redistribution, CoMn/CoMn2O4 can synergistically facilitate the adsorption and fracture of the chemical groups in urea and water molecules and thus promote urea electrocatalysis.</description><subject>bimetal catalysis</subject><subject>Bimetals</subject><subject>Charge transfer</subject><subject>Chemical bonds</subject><subject>Cobalt compounds</subject><subject>Electrocatalysis</subject><subject>Electrocatalysts</subject><subject>electrochemical turning</subject><subject>Electrodes</subject><subject>Electrolysis</subject><subject>Energy conservation</subject><subject>Energy conversion</subject><subject>Heterojunctions</subject><subject>Heterostructures</subject><subject>Hydrogen</subject><subject>hydrogen evolution</subject><subject>Hydrogen evolution reactions</subject><subject>Hydrogen production</subject><subject>Hydrogen-based energy</subject><subject>Materials science</subject><subject>Oxidation</subject><subject>Oxygen evolution reactions</subject><subject>Schottky heterojunctions</subject><subject>Sustainable development</subject><subject>urea oxidation</subject><subject>Ureas</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkEFPwjAcxRejiYhePTfxDLbd2m5HQBATjCZI9NaUrcXCtmLbYebJj-Bn9JM4MoNHT__3T37vveQFwSWCfQQhvhaZKvoYYgghIfQo6CCKaC-EOD4-aPRyGpw5t4YQMRZGneBjqAvpRQ7m6avxflODqfTSmnVVpl6bEgyNcV6XKzAupV3V359fc7Hb_9M6s2YlS_BoTVa1sLKmAIN8I3JdSvAsmiSw0wIsrBRgnMvUW5OKpq522p0HJ0rkTl783m6wmIyfRtPe7OH2bjSY9dIIQ9oTGUOY4ljgCC4jwliSMkkSomBGk2QpWEwIkSpUQuAlhZEiCZNxHNMMZUhBEnaDqzZ3a81bJZ3na1PZsqnkTWREaERJ3FD9lkqtcc5KxbdWF8LWHEG-35fv9-WHfRtD0hredS7rf2g-uJnc_3l_AMdDgZU</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Wang, Chao</creator><creator>Lu, Haoliang</creator><creator>Mao, Zeyang</creator><creator>Yan, Chenglin</creator><creator>Shen, Guozhen</creator><creator>Wang, Xianfu</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9755-1647</orcidid></search><sort><creationdate>20200501</creationdate><title>Bimetal Schottky Heterojunction Boosting Energy‐Saving Hydrogen Production from Alkaline Water via Urea Electrocatalysis</title><author>Wang, Chao ; Lu, Haoliang ; Mao, Zeyang ; Yan, Chenglin ; Shen, Guozhen ; Wang, Xianfu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4206-ad712628a240b45779c7e595f0d699ba78555ef3faa2b604f597e8886d1d1f053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>bimetal catalysis</topic><topic>Bimetals</topic><topic>Charge transfer</topic><topic>Chemical bonds</topic><topic>Cobalt compounds</topic><topic>Electrocatalysis</topic><topic>Electrocatalysts</topic><topic>electrochemical turning</topic><topic>Electrodes</topic><topic>Electrolysis</topic><topic>Energy conservation</topic><topic>Energy conversion</topic><topic>Heterojunctions</topic><topic>Heterostructures</topic><topic>Hydrogen</topic><topic>hydrogen evolution</topic><topic>Hydrogen evolution reactions</topic><topic>Hydrogen production</topic><topic>Hydrogen-based energy</topic><topic>Materials science</topic><topic>Oxidation</topic><topic>Oxygen evolution reactions</topic><topic>Schottky heterojunctions</topic><topic>Sustainable development</topic><topic>urea oxidation</topic><topic>Ureas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Chao</creatorcontrib><creatorcontrib>Lu, Haoliang</creatorcontrib><creatorcontrib>Mao, Zeyang</creatorcontrib><creatorcontrib>Yan, Chenglin</creatorcontrib><creatorcontrib>Shen, Guozhen</creatorcontrib><creatorcontrib>Wang, Xianfu</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Chao</au><au>Lu, Haoliang</au><au>Mao, Zeyang</au><au>Yan, Chenglin</au><au>Shen, Guozhen</au><au>Wang, Xianfu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bimetal Schottky Heterojunction Boosting Energy‐Saving Hydrogen Production from Alkaline Water via Urea Electrocatalysis</atitle><jtitle>Advanced functional materials</jtitle><date>2020-05-01</date><risdate>2020</risdate><volume>30</volume><issue>21</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Hydrogen production via water electrocatalysis is limited by the sluggish anodic oxygen evolution reaction (OER) that requires a high overpotential. In response, a urea‐assisted energy‐saving alkaline hydrogen‐production system has been investigated by replacing OER with a more oxidizable urea oxidation reaction (UOR). A bimetal heterostructure CoMn/CoMn2O4 as a bifunctional catalyst is constructed in an alkaline system for both urea oxidation and hydrogen evolution reaction (HER). Based on the Schottky heterojunction structure, CoMn/CoMn2O4 induces self‐driven charge transfer at the interface, which facilitates the absorption of reactant molecules and the fracture of chemical bonds, therefore triggering the decomposition of water and urea. As a result, the heterostructured electrode exhibits ultralow potentials of −0.069 and 1.32 V (vs reversible hydrogen electrode) to reach 10 mA cm−2 for HER and UOR, respectively, in alkaline solution, and the full urea electrolysis driven by CoMn/CoMn2O4 delivers 10 mA cm−2 at a relatively low potential of 1.51 V and performs stably for more than 15 h. This represents a novel strategy of Mott–Schottky hybrids in electrocatalysts and should inspire the development of sustainable energy conversion by combining hydrogen production and sewage treatment. A Schottky catalyst is constructed from a CoMn/CoMn2O4 heterostructure for energy‐saving hydrogen production from alkaline solution via urea electrocatalysis. Benefiting from the interface electron redistribution, CoMn/CoMn2O4 can synergistically facilitate the adsorption and fracture of the chemical groups in urea and water molecules and thus promote urea electrocatalysis.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202000556</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9755-1647</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2020-05, Vol.30 (21), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2404564658
source Wiley Online Library - AutoHoldings Journals
subjects bimetal catalysis
Bimetals
Charge transfer
Chemical bonds
Cobalt compounds
Electrocatalysis
Electrocatalysts
electrochemical turning
Electrodes
Electrolysis
Energy conservation
Energy conversion
Heterojunctions
Heterostructures
Hydrogen
hydrogen evolution
Hydrogen evolution reactions
Hydrogen production
Hydrogen-based energy
Materials science
Oxidation
Oxygen evolution reactions
Schottky heterojunctions
Sustainable development
urea oxidation
Ureas
title Bimetal Schottky Heterojunction Boosting Energy‐Saving Hydrogen Production from Alkaline Water via Urea Electrocatalysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T23%3A44%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bimetal%20Schottky%20Heterojunction%20Boosting%20Energy%E2%80%90Saving%20Hydrogen%20Production%20from%20Alkaline%20Water%20via%20Urea%20Electrocatalysis&rft.jtitle=Advanced%20functional%20materials&rft.au=Wang,%20Chao&rft.date=2020-05-01&rft.volume=30&rft.issue=21&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202000556&rft_dat=%3Cproquest_cross%3E2404564658%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2404564658&rft_id=info:pmid/&rfr_iscdi=true