Bimetal Schottky Heterojunction Boosting Energy‐Saving Hydrogen Production from Alkaline Water via Urea Electrocatalysis
Hydrogen production via water electrocatalysis is limited by the sluggish anodic oxygen evolution reaction (OER) that requires a high overpotential. In response, a urea‐assisted energy‐saving alkaline hydrogen‐production system has been investigated by replacing OER with a more oxidizable urea oxida...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2020-05, Vol.30 (21), p.n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 21 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 30 |
creator | Wang, Chao Lu, Haoliang Mao, Zeyang Yan, Chenglin Shen, Guozhen Wang, Xianfu |
description | Hydrogen production via water electrocatalysis is limited by the sluggish anodic oxygen evolution reaction (OER) that requires a high overpotential. In response, a urea‐assisted energy‐saving alkaline hydrogen‐production system has been investigated by replacing OER with a more oxidizable urea oxidation reaction (UOR). A bimetal heterostructure CoMn/CoMn2O4 as a bifunctional catalyst is constructed in an alkaline system for both urea oxidation and hydrogen evolution reaction (HER). Based on the Schottky heterojunction structure, CoMn/CoMn2O4 induces self‐driven charge transfer at the interface, which facilitates the absorption of reactant molecules and the fracture of chemical bonds, therefore triggering the decomposition of water and urea. As a result, the heterostructured electrode exhibits ultralow potentials of −0.069 and 1.32 V (vs reversible hydrogen electrode) to reach 10 mA cm−2 for HER and UOR, respectively, in alkaline solution, and the full urea electrolysis driven by CoMn/CoMn2O4 delivers 10 mA cm−2 at a relatively low potential of 1.51 V and performs stably for more than 15 h. This represents a novel strategy of Mott–Schottky hybrids in electrocatalysts and should inspire the development of sustainable energy conversion by combining hydrogen production and sewage treatment.
A Schottky catalyst is constructed from a CoMn/CoMn2O4 heterostructure for energy‐saving hydrogen production from alkaline solution via urea electrocatalysis. Benefiting from the interface electron redistribution, CoMn/CoMn2O4 can synergistically facilitate the adsorption and fracture of the chemical groups in urea and water molecules and thus promote urea electrocatalysis. |
doi_str_mv | 10.1002/adfm.202000556 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2404564658</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2404564658</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4206-ad712628a240b45779c7e595f0d699ba78555ef3faa2b604f597e8886d1d1f053</originalsourceid><addsrcrecordid>eNqFkEFPwjAcxRejiYhePTfxDLbd2m5HQBATjCZI9NaUrcXCtmLbYebJj-Bn9JM4MoNHT__3T37vveQFwSWCfQQhvhaZKvoYYgghIfQo6CCKaC-EOD4-aPRyGpw5t4YQMRZGneBjqAvpRQ7m6avxflODqfTSmnVVpl6bEgyNcV6XKzAupV3V359fc7Hb_9M6s2YlS_BoTVa1sLKmAIN8I3JdSvAsmiSw0wIsrBRgnMvUW5OKpq522p0HJ0rkTl783m6wmIyfRtPe7OH2bjSY9dIIQ9oTGUOY4ljgCC4jwliSMkkSomBGk2QpWEwIkSpUQuAlhZEiCZNxHNMMZUhBEnaDqzZ3a81bJZ3na1PZsqnkTWREaERJ3FD9lkqtcc5KxbdWF8LWHEG-35fv9-WHfRtD0hredS7rf2g-uJnc_3l_AMdDgZU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2404564658</pqid></control><display><type>article</type><title>Bimetal Schottky Heterojunction Boosting Energy‐Saving Hydrogen Production from Alkaline Water via Urea Electrocatalysis</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Wang, Chao ; Lu, Haoliang ; Mao, Zeyang ; Yan, Chenglin ; Shen, Guozhen ; Wang, Xianfu</creator><creatorcontrib>Wang, Chao ; Lu, Haoliang ; Mao, Zeyang ; Yan, Chenglin ; Shen, Guozhen ; Wang, Xianfu</creatorcontrib><description>Hydrogen production via water electrocatalysis is limited by the sluggish anodic oxygen evolution reaction (OER) that requires a high overpotential. In response, a urea‐assisted energy‐saving alkaline hydrogen‐production system has been investigated by replacing OER with a more oxidizable urea oxidation reaction (UOR). A bimetal heterostructure CoMn/CoMn2O4 as a bifunctional catalyst is constructed in an alkaline system for both urea oxidation and hydrogen evolution reaction (HER). Based on the Schottky heterojunction structure, CoMn/CoMn2O4 induces self‐driven charge transfer at the interface, which facilitates the absorption of reactant molecules and the fracture of chemical bonds, therefore triggering the decomposition of water and urea. As a result, the heterostructured electrode exhibits ultralow potentials of −0.069 and 1.32 V (vs reversible hydrogen electrode) to reach 10 mA cm−2 for HER and UOR, respectively, in alkaline solution, and the full urea electrolysis driven by CoMn/CoMn2O4 delivers 10 mA cm−2 at a relatively low potential of 1.51 V and performs stably for more than 15 h. This represents a novel strategy of Mott–Schottky hybrids in electrocatalysts and should inspire the development of sustainable energy conversion by combining hydrogen production and sewage treatment.
A Schottky catalyst is constructed from a CoMn/CoMn2O4 heterostructure for energy‐saving hydrogen production from alkaline solution via urea electrocatalysis. Benefiting from the interface electron redistribution, CoMn/CoMn2O4 can synergistically facilitate the adsorption and fracture of the chemical groups in urea and water molecules and thus promote urea electrocatalysis.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202000556</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>bimetal catalysis ; Bimetals ; Charge transfer ; Chemical bonds ; Cobalt compounds ; Electrocatalysis ; Electrocatalysts ; electrochemical turning ; Electrodes ; Electrolysis ; Energy conservation ; Energy conversion ; Heterojunctions ; Heterostructures ; Hydrogen ; hydrogen evolution ; Hydrogen evolution reactions ; Hydrogen production ; Hydrogen-based energy ; Materials science ; Oxidation ; Oxygen evolution reactions ; Schottky heterojunctions ; Sustainable development ; urea oxidation ; Ureas</subject><ispartof>Advanced functional materials, 2020-05, Vol.30 (21), p.n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4206-ad712628a240b45779c7e595f0d699ba78555ef3faa2b604f597e8886d1d1f053</citedby><cites>FETCH-LOGICAL-c4206-ad712628a240b45779c7e595f0d699ba78555ef3faa2b604f597e8886d1d1f053</cites><orcidid>0000-0002-9755-1647</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202000556$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202000556$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Wang, Chao</creatorcontrib><creatorcontrib>Lu, Haoliang</creatorcontrib><creatorcontrib>Mao, Zeyang</creatorcontrib><creatorcontrib>Yan, Chenglin</creatorcontrib><creatorcontrib>Shen, Guozhen</creatorcontrib><creatorcontrib>Wang, Xianfu</creatorcontrib><title>Bimetal Schottky Heterojunction Boosting Energy‐Saving Hydrogen Production from Alkaline Water via Urea Electrocatalysis</title><title>Advanced functional materials</title><description>Hydrogen production via water electrocatalysis is limited by the sluggish anodic oxygen evolution reaction (OER) that requires a high overpotential. In response, a urea‐assisted energy‐saving alkaline hydrogen‐production system has been investigated by replacing OER with a more oxidizable urea oxidation reaction (UOR). A bimetal heterostructure CoMn/CoMn2O4 as a bifunctional catalyst is constructed in an alkaline system for both urea oxidation and hydrogen evolution reaction (HER). Based on the Schottky heterojunction structure, CoMn/CoMn2O4 induces self‐driven charge transfer at the interface, which facilitates the absorption of reactant molecules and the fracture of chemical bonds, therefore triggering the decomposition of water and urea. As a result, the heterostructured electrode exhibits ultralow potentials of −0.069 and 1.32 V (vs reversible hydrogen electrode) to reach 10 mA cm−2 for HER and UOR, respectively, in alkaline solution, and the full urea electrolysis driven by CoMn/CoMn2O4 delivers 10 mA cm−2 at a relatively low potential of 1.51 V and performs stably for more than 15 h. This represents a novel strategy of Mott–Schottky hybrids in electrocatalysts and should inspire the development of sustainable energy conversion by combining hydrogen production and sewage treatment.
A Schottky catalyst is constructed from a CoMn/CoMn2O4 heterostructure for energy‐saving hydrogen production from alkaline solution via urea electrocatalysis. Benefiting from the interface electron redistribution, CoMn/CoMn2O4 can synergistically facilitate the adsorption and fracture of the chemical groups in urea and water molecules and thus promote urea electrocatalysis.</description><subject>bimetal catalysis</subject><subject>Bimetals</subject><subject>Charge transfer</subject><subject>Chemical bonds</subject><subject>Cobalt compounds</subject><subject>Electrocatalysis</subject><subject>Electrocatalysts</subject><subject>electrochemical turning</subject><subject>Electrodes</subject><subject>Electrolysis</subject><subject>Energy conservation</subject><subject>Energy conversion</subject><subject>Heterojunctions</subject><subject>Heterostructures</subject><subject>Hydrogen</subject><subject>hydrogen evolution</subject><subject>Hydrogen evolution reactions</subject><subject>Hydrogen production</subject><subject>Hydrogen-based energy</subject><subject>Materials science</subject><subject>Oxidation</subject><subject>Oxygen evolution reactions</subject><subject>Schottky heterojunctions</subject><subject>Sustainable development</subject><subject>urea oxidation</subject><subject>Ureas</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkEFPwjAcxRejiYhePTfxDLbd2m5HQBATjCZI9NaUrcXCtmLbYebJj-Bn9JM4MoNHT__3T37vveQFwSWCfQQhvhaZKvoYYgghIfQo6CCKaC-EOD4-aPRyGpw5t4YQMRZGneBjqAvpRQ7m6avxflODqfTSmnVVpl6bEgyNcV6XKzAupV3V359fc7Hb_9M6s2YlS_BoTVa1sLKmAIN8I3JdSvAsmiSw0wIsrBRgnMvUW5OKpq522p0HJ0rkTl783m6wmIyfRtPe7OH2bjSY9dIIQ9oTGUOY4ljgCC4jwliSMkkSomBGk2QpWEwIkSpUQuAlhZEiCZNxHNMMZUhBEnaDqzZ3a81bJZ3na1PZsqnkTWREaERJ3FD9lkqtcc5KxbdWF8LWHEG-35fv9-WHfRtD0hredS7rf2g-uJnc_3l_AMdDgZU</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Wang, Chao</creator><creator>Lu, Haoliang</creator><creator>Mao, Zeyang</creator><creator>Yan, Chenglin</creator><creator>Shen, Guozhen</creator><creator>Wang, Xianfu</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9755-1647</orcidid></search><sort><creationdate>20200501</creationdate><title>Bimetal Schottky Heterojunction Boosting Energy‐Saving Hydrogen Production from Alkaline Water via Urea Electrocatalysis</title><author>Wang, Chao ; Lu, Haoliang ; Mao, Zeyang ; Yan, Chenglin ; Shen, Guozhen ; Wang, Xianfu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4206-ad712628a240b45779c7e595f0d699ba78555ef3faa2b604f597e8886d1d1f053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>bimetal catalysis</topic><topic>Bimetals</topic><topic>Charge transfer</topic><topic>Chemical bonds</topic><topic>Cobalt compounds</topic><topic>Electrocatalysis</topic><topic>Electrocatalysts</topic><topic>electrochemical turning</topic><topic>Electrodes</topic><topic>Electrolysis</topic><topic>Energy conservation</topic><topic>Energy conversion</topic><topic>Heterojunctions</topic><topic>Heterostructures</topic><topic>Hydrogen</topic><topic>hydrogen evolution</topic><topic>Hydrogen evolution reactions</topic><topic>Hydrogen production</topic><topic>Hydrogen-based energy</topic><topic>Materials science</topic><topic>Oxidation</topic><topic>Oxygen evolution reactions</topic><topic>Schottky heterojunctions</topic><topic>Sustainable development</topic><topic>urea oxidation</topic><topic>Ureas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Chao</creatorcontrib><creatorcontrib>Lu, Haoliang</creatorcontrib><creatorcontrib>Mao, Zeyang</creatorcontrib><creatorcontrib>Yan, Chenglin</creatorcontrib><creatorcontrib>Shen, Guozhen</creatorcontrib><creatorcontrib>Wang, Xianfu</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Chao</au><au>Lu, Haoliang</au><au>Mao, Zeyang</au><au>Yan, Chenglin</au><au>Shen, Guozhen</au><au>Wang, Xianfu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bimetal Schottky Heterojunction Boosting Energy‐Saving Hydrogen Production from Alkaline Water via Urea Electrocatalysis</atitle><jtitle>Advanced functional materials</jtitle><date>2020-05-01</date><risdate>2020</risdate><volume>30</volume><issue>21</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Hydrogen production via water electrocatalysis is limited by the sluggish anodic oxygen evolution reaction (OER) that requires a high overpotential. In response, a urea‐assisted energy‐saving alkaline hydrogen‐production system has been investigated by replacing OER with a more oxidizable urea oxidation reaction (UOR). A bimetal heterostructure CoMn/CoMn2O4 as a bifunctional catalyst is constructed in an alkaline system for both urea oxidation and hydrogen evolution reaction (HER). Based on the Schottky heterojunction structure, CoMn/CoMn2O4 induces self‐driven charge transfer at the interface, which facilitates the absorption of reactant molecules and the fracture of chemical bonds, therefore triggering the decomposition of water and urea. As a result, the heterostructured electrode exhibits ultralow potentials of −0.069 and 1.32 V (vs reversible hydrogen electrode) to reach 10 mA cm−2 for HER and UOR, respectively, in alkaline solution, and the full urea electrolysis driven by CoMn/CoMn2O4 delivers 10 mA cm−2 at a relatively low potential of 1.51 V and performs stably for more than 15 h. This represents a novel strategy of Mott–Schottky hybrids in electrocatalysts and should inspire the development of sustainable energy conversion by combining hydrogen production and sewage treatment.
A Schottky catalyst is constructed from a CoMn/CoMn2O4 heterostructure for energy‐saving hydrogen production from alkaline solution via urea electrocatalysis. Benefiting from the interface electron redistribution, CoMn/CoMn2O4 can synergistically facilitate the adsorption and fracture of the chemical groups in urea and water molecules and thus promote urea electrocatalysis.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202000556</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9755-1647</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2020-05, Vol.30 (21), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2404564658 |
source | Wiley Online Library - AutoHoldings Journals |
subjects | bimetal catalysis Bimetals Charge transfer Chemical bonds Cobalt compounds Electrocatalysis Electrocatalysts electrochemical turning Electrodes Electrolysis Energy conservation Energy conversion Heterojunctions Heterostructures Hydrogen hydrogen evolution Hydrogen evolution reactions Hydrogen production Hydrogen-based energy Materials science Oxidation Oxygen evolution reactions Schottky heterojunctions Sustainable development urea oxidation Ureas |
title | Bimetal Schottky Heterojunction Boosting Energy‐Saving Hydrogen Production from Alkaline Water via Urea Electrocatalysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T23%3A44%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bimetal%20Schottky%20Heterojunction%20Boosting%20Energy%E2%80%90Saving%20Hydrogen%20Production%20from%20Alkaline%20Water%20via%20Urea%20Electrocatalysis&rft.jtitle=Advanced%20functional%20materials&rft.au=Wang,%20Chao&rft.date=2020-05-01&rft.volume=30&rft.issue=21&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202000556&rft_dat=%3Cproquest_cross%3E2404564658%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2404564658&rft_id=info:pmid/&rfr_iscdi=true |