Cobalt Phosphate Cocatalyst Loaded-CdS Nanorod Photoanode with Well-Defined Junctions for Highly Efficient Photoelectrochemical Water Splitting

Cocatalysts play important roles in photocatalytic and photoelectrochemical water splitting reactions. However, the formation of well-defined junctions between low dimensional semiconductors and cocatalysts is still challenging. In this study, CdS nanorod photoanodes loaded with cobalt phosphate (Co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Catalysis letters 2020-07, Vol.150 (7), p.1878-1889
Hauptverfasser: Song, Zhimin, Zhu, Xiaodi, Zeng, Yusheng, Wang, Azhu, Li, Shikuo, Fan, Yi, Cai, Mengdie, Cheng, Qin, Wei, Yuxue, Sun, Song
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1889
container_issue 7
container_start_page 1878
container_title Catalysis letters
container_volume 150
creator Song, Zhimin
Zhu, Xiaodi
Zeng, Yusheng
Wang, Azhu
Li, Shikuo
Fan, Yi
Cai, Mengdie
Cheng, Qin
Wei, Yuxue
Sun, Song
description Cocatalysts play important roles in photocatalytic and photoelectrochemical water splitting reactions. However, the formation of well-defined junctions between low dimensional semiconductors and cocatalysts is still challenging. In this study, CdS nanorod photoanodes loaded with cobalt phosphate (CoPi) cocatalyst were synthesized by a facile two-step route, in which CdS nanorods were prepared using a hydrothermal method followed by photo-assisted electrodeposition of CoPi. It was found that the formation of intimate junctions between CoPi and CdS nanorods in the form of Co–S bonding effectively facilitated the charge separation and lowered the activation energy of the water oxidation reaction. This resulted in highly efficient and stable photoelectrochemical water splitting on the CdS photoanode. The optimal CdS/CoPi photoanode showed a maximum photocurrent of 4.7 mA/cm 2 at 0 V versus reversible hydrogen electrode under an AM 1.5 G solar simulator, which was 5.5-fold higher than that of bare CdS photoanode. This work expands the potential application of the cocatalyst CoPi in CdS photoanode systems and improves our understanding of the nature of cocatalysts with well-defined interface junctions in semiconductors. Graphic Abstract Well-defined interfacial junction with Co–S bonding over cobalt phosphate cocatalyzed CdS nanorod photoanode facilitates the charge separation and lowers the activation energy, thus achieving a considerable photocurrent of 4.7 mA/cm 2 at 0 V vs. RHE.
doi_str_mv 10.1007/s10562-019-03084-z
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2404532846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A624443471</galeid><sourcerecordid>A624443471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-c57d8efdeb16c6c13527d27e62a7085ca4fdff8227f2e469c0ce2318c845cb8a3</originalsourceid><addsrcrecordid>eNp9kUFvFCEUxydGE2v1C3gi8eSBCgwzzBybtdqajRpX094IC48ZGgorsNHtl_AryzomphfDgZeX34_3yL9pXlJyRgkRbzIlXc8woSMmLRk4vn_UnNBOMDyI8eZxrQmluBXs5mnzLOdbQsgo6HjS_FrFrfIFfZ5j3s2qAFpFrYryh1zQOioDBq_MBn1UIaZojlyJtTaAfrgyo2vwHr8F6wIY9GEfdHExZGRjQpdumv0BXVjrtINQFhc86JKinuHOaeXRdZ2Z0GbnXSkuTM-bJ1b5DC_-3qfNt3cXX1eXeP3p_dXqfI01Z2PBuhNmAGtgS3vda9p2TBgmoGdKkKHTiltj7cCYsAx4P2qigbV00APv9HZQ7Wnzanl3l-L3PeQib-M-hTpSMk5417KB95U6W6hJeZAu2FiS0vWY4_Yx1H_X_nnPOOctF7QKrx8IlSnws0xqn7O82nx5yLKF1SnmnMDKXXJ3Kh0kJfKYqlxSlTVV-SdVeV-ldpFyhcME6d_e_7F-AwB8p58</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2404532846</pqid></control><display><type>article</type><title>Cobalt Phosphate Cocatalyst Loaded-CdS Nanorod Photoanode with Well-Defined Junctions for Highly Efficient Photoelectrochemical Water Splitting</title><source>SpringerLink (Online service)</source><creator>Song, Zhimin ; Zhu, Xiaodi ; Zeng, Yusheng ; Wang, Azhu ; Li, Shikuo ; Fan, Yi ; Cai, Mengdie ; Cheng, Qin ; Wei, Yuxue ; Sun, Song</creator><creatorcontrib>Song, Zhimin ; Zhu, Xiaodi ; Zeng, Yusheng ; Wang, Azhu ; Li, Shikuo ; Fan, Yi ; Cai, Mengdie ; Cheng, Qin ; Wei, Yuxue ; Sun, Song</creatorcontrib><description>Cocatalysts play important roles in photocatalytic and photoelectrochemical water splitting reactions. However, the formation of well-defined junctions between low dimensional semiconductors and cocatalysts is still challenging. In this study, CdS nanorod photoanodes loaded with cobalt phosphate (CoPi) cocatalyst were synthesized by a facile two-step route, in which CdS nanorods were prepared using a hydrothermal method followed by photo-assisted electrodeposition of CoPi. It was found that the formation of intimate junctions between CoPi and CdS nanorods in the form of Co–S bonding effectively facilitated the charge separation and lowered the activation energy of the water oxidation reaction. This resulted in highly efficient and stable photoelectrochemical water splitting on the CdS photoanode. The optimal CdS/CoPi photoanode showed a maximum photocurrent of 4.7 mA/cm 2 at 0 V versus reversible hydrogen electrode under an AM 1.5 G solar simulator, which was 5.5-fold higher than that of bare CdS photoanode. This work expands the potential application of the cocatalyst CoPi in CdS photoanode systems and improves our understanding of the nature of cocatalysts with well-defined interface junctions in semiconductors. Graphic Abstract Well-defined interfacial junction with Co–S bonding over cobalt phosphate cocatalyzed CdS nanorod photoanode facilitates the charge separation and lowers the activation energy, thus achieving a considerable photocurrent of 4.7 mA/cm 2 at 0 V vs. RHE.</description><identifier>ISSN: 1011-372X</identifier><identifier>EISSN: 1572-879X</identifier><identifier>DOI: 10.1007/s10562-019-03084-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Activation energy ; Bonding ; Catalysis ; Chemistry ; Chemistry and Materials Science ; Cobalt ; Electrochemical reactions ; Industrial Chemistry/Chemical Engineering ; Low dimensional semiconductors ; Nanorods ; Organometallic Chemistry ; Oxidation ; Phosphates ; Photoanodes ; Photoelectric effect ; Photoelectric emission ; Physical Chemistry ; Semiconductors ; Separation ; Water splitting</subject><ispartof>Catalysis letters, 2020-07, Vol.150 (7), p.1878-1889</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-c57d8efdeb16c6c13527d27e62a7085ca4fdff8227f2e469c0ce2318c845cb8a3</citedby><cites>FETCH-LOGICAL-c429t-c57d8efdeb16c6c13527d27e62a7085ca4fdff8227f2e469c0ce2318c845cb8a3</cites><orcidid>0000-0002-3625-7858</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10562-019-03084-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10562-019-03084-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Song, Zhimin</creatorcontrib><creatorcontrib>Zhu, Xiaodi</creatorcontrib><creatorcontrib>Zeng, Yusheng</creatorcontrib><creatorcontrib>Wang, Azhu</creatorcontrib><creatorcontrib>Li, Shikuo</creatorcontrib><creatorcontrib>Fan, Yi</creatorcontrib><creatorcontrib>Cai, Mengdie</creatorcontrib><creatorcontrib>Cheng, Qin</creatorcontrib><creatorcontrib>Wei, Yuxue</creatorcontrib><creatorcontrib>Sun, Song</creatorcontrib><title>Cobalt Phosphate Cocatalyst Loaded-CdS Nanorod Photoanode with Well-Defined Junctions for Highly Efficient Photoelectrochemical Water Splitting</title><title>Catalysis letters</title><addtitle>Catal Lett</addtitle><description>Cocatalysts play important roles in photocatalytic and photoelectrochemical water splitting reactions. However, the formation of well-defined junctions between low dimensional semiconductors and cocatalysts is still challenging. In this study, CdS nanorod photoanodes loaded with cobalt phosphate (CoPi) cocatalyst were synthesized by a facile two-step route, in which CdS nanorods were prepared using a hydrothermal method followed by photo-assisted electrodeposition of CoPi. It was found that the formation of intimate junctions between CoPi and CdS nanorods in the form of Co–S bonding effectively facilitated the charge separation and lowered the activation energy of the water oxidation reaction. This resulted in highly efficient and stable photoelectrochemical water splitting on the CdS photoanode. The optimal CdS/CoPi photoanode showed a maximum photocurrent of 4.7 mA/cm 2 at 0 V versus reversible hydrogen electrode under an AM 1.5 G solar simulator, which was 5.5-fold higher than that of bare CdS photoanode. This work expands the potential application of the cocatalyst CoPi in CdS photoanode systems and improves our understanding of the nature of cocatalysts with well-defined interface junctions in semiconductors. Graphic Abstract Well-defined interfacial junction with Co–S bonding over cobalt phosphate cocatalyzed CdS nanorod photoanode facilitates the charge separation and lowers the activation energy, thus achieving a considerable photocurrent of 4.7 mA/cm 2 at 0 V vs. RHE.</description><subject>Activation energy</subject><subject>Bonding</subject><subject>Catalysis</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Cobalt</subject><subject>Electrochemical reactions</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Low dimensional semiconductors</subject><subject>Nanorods</subject><subject>Organometallic Chemistry</subject><subject>Oxidation</subject><subject>Phosphates</subject><subject>Photoanodes</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>Physical Chemistry</subject><subject>Semiconductors</subject><subject>Separation</subject><subject>Water splitting</subject><issn>1011-372X</issn><issn>1572-879X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kUFvFCEUxydGE2v1C3gi8eSBCgwzzBybtdqajRpX094IC48ZGgorsNHtl_AryzomphfDgZeX34_3yL9pXlJyRgkRbzIlXc8woSMmLRk4vn_UnNBOMDyI8eZxrQmluBXs5mnzLOdbQsgo6HjS_FrFrfIFfZ5j3s2qAFpFrYryh1zQOioDBq_MBn1UIaZojlyJtTaAfrgyo2vwHr8F6wIY9GEfdHExZGRjQpdumv0BXVjrtINQFhc86JKinuHOaeXRdZ2Z0GbnXSkuTM-bJ1b5DC_-3qfNt3cXX1eXeP3p_dXqfI01Z2PBuhNmAGtgS3vda9p2TBgmoGdKkKHTiltj7cCYsAx4P2qigbV00APv9HZQ7Wnzanl3l-L3PeQib-M-hTpSMk5417KB95U6W6hJeZAu2FiS0vWY4_Yx1H_X_nnPOOctF7QKrx8IlSnws0xqn7O82nx5yLKF1SnmnMDKXXJ3Kh0kJfKYqlxSlTVV-SdVeV-ldpFyhcME6d_e_7F-AwB8p58</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Song, Zhimin</creator><creator>Zhu, Xiaodi</creator><creator>Zeng, Yusheng</creator><creator>Wang, Azhu</creator><creator>Li, Shikuo</creator><creator>Fan, Yi</creator><creator>Cai, Mengdie</creator><creator>Cheng, Qin</creator><creator>Wei, Yuxue</creator><creator>Sun, Song</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-3625-7858</orcidid></search><sort><creationdate>20200701</creationdate><title>Cobalt Phosphate Cocatalyst Loaded-CdS Nanorod Photoanode with Well-Defined Junctions for Highly Efficient Photoelectrochemical Water Splitting</title><author>Song, Zhimin ; Zhu, Xiaodi ; Zeng, Yusheng ; Wang, Azhu ; Li, Shikuo ; Fan, Yi ; Cai, Mengdie ; Cheng, Qin ; Wei, Yuxue ; Sun, Song</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-c57d8efdeb16c6c13527d27e62a7085ca4fdff8227f2e469c0ce2318c845cb8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Activation energy</topic><topic>Bonding</topic><topic>Catalysis</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Cobalt</topic><topic>Electrochemical reactions</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Low dimensional semiconductors</topic><topic>Nanorods</topic><topic>Organometallic Chemistry</topic><topic>Oxidation</topic><topic>Phosphates</topic><topic>Photoanodes</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>Physical Chemistry</topic><topic>Semiconductors</topic><topic>Separation</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Zhimin</creatorcontrib><creatorcontrib>Zhu, Xiaodi</creatorcontrib><creatorcontrib>Zeng, Yusheng</creatorcontrib><creatorcontrib>Wang, Azhu</creatorcontrib><creatorcontrib>Li, Shikuo</creatorcontrib><creatorcontrib>Fan, Yi</creatorcontrib><creatorcontrib>Cai, Mengdie</creatorcontrib><creatorcontrib>Cheng, Qin</creatorcontrib><creatorcontrib>Wei, Yuxue</creatorcontrib><creatorcontrib>Sun, Song</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Catalysis letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Zhimin</au><au>Zhu, Xiaodi</au><au>Zeng, Yusheng</au><au>Wang, Azhu</au><au>Li, Shikuo</au><au>Fan, Yi</au><au>Cai, Mengdie</au><au>Cheng, Qin</au><au>Wei, Yuxue</au><au>Sun, Song</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cobalt Phosphate Cocatalyst Loaded-CdS Nanorod Photoanode with Well-Defined Junctions for Highly Efficient Photoelectrochemical Water Splitting</atitle><jtitle>Catalysis letters</jtitle><stitle>Catal Lett</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>150</volume><issue>7</issue><spage>1878</spage><epage>1889</epage><pages>1878-1889</pages><issn>1011-372X</issn><eissn>1572-879X</eissn><abstract>Cocatalysts play important roles in photocatalytic and photoelectrochemical water splitting reactions. However, the formation of well-defined junctions between low dimensional semiconductors and cocatalysts is still challenging. In this study, CdS nanorod photoanodes loaded with cobalt phosphate (CoPi) cocatalyst were synthesized by a facile two-step route, in which CdS nanorods were prepared using a hydrothermal method followed by photo-assisted electrodeposition of CoPi. It was found that the formation of intimate junctions between CoPi and CdS nanorods in the form of Co–S bonding effectively facilitated the charge separation and lowered the activation energy of the water oxidation reaction. This resulted in highly efficient and stable photoelectrochemical water splitting on the CdS photoanode. The optimal CdS/CoPi photoanode showed a maximum photocurrent of 4.7 mA/cm 2 at 0 V versus reversible hydrogen electrode under an AM 1.5 G solar simulator, which was 5.5-fold higher than that of bare CdS photoanode. This work expands the potential application of the cocatalyst CoPi in CdS photoanode systems and improves our understanding of the nature of cocatalysts with well-defined interface junctions in semiconductors. Graphic Abstract Well-defined interfacial junction with Co–S bonding over cobalt phosphate cocatalyzed CdS nanorod photoanode facilitates the charge separation and lowers the activation energy, thus achieving a considerable photocurrent of 4.7 mA/cm 2 at 0 V vs. RHE.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10562-019-03084-z</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3625-7858</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1011-372X
ispartof Catalysis letters, 2020-07, Vol.150 (7), p.1878-1889
issn 1011-372X
1572-879X
language eng
recordid cdi_proquest_journals_2404532846
source SpringerLink (Online service)
subjects Activation energy
Bonding
Catalysis
Chemistry
Chemistry and Materials Science
Cobalt
Electrochemical reactions
Industrial Chemistry/Chemical Engineering
Low dimensional semiconductors
Nanorods
Organometallic Chemistry
Oxidation
Phosphates
Photoanodes
Photoelectric effect
Photoelectric emission
Physical Chemistry
Semiconductors
Separation
Water splitting
title Cobalt Phosphate Cocatalyst Loaded-CdS Nanorod Photoanode with Well-Defined Junctions for Highly Efficient Photoelectrochemical Water Splitting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T08%3A03%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cobalt%20Phosphate%20Cocatalyst%20Loaded-CdS%20Nanorod%20Photoanode%20with%20Well-Defined%20Junctions%20for%20Highly%20Efficient%20Photoelectrochemical%20Water%20Splitting&rft.jtitle=Catalysis%20letters&rft.au=Song,%20Zhimin&rft.date=2020-07-01&rft.volume=150&rft.issue=7&rft.spage=1878&rft.epage=1889&rft.pages=1878-1889&rft.issn=1011-372X&rft.eissn=1572-879X&rft_id=info:doi/10.1007/s10562-019-03084-z&rft_dat=%3Cgale_proqu%3EA624443471%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2404532846&rft_id=info:pmid/&rft_galeid=A624443471&rfr_iscdi=true