Cobalt Phosphate Cocatalyst Loaded-CdS Nanorod Photoanode with Well-Defined Junctions for Highly Efficient Photoelectrochemical Water Splitting
Cocatalysts play important roles in photocatalytic and photoelectrochemical water splitting reactions. However, the formation of well-defined junctions between low dimensional semiconductors and cocatalysts is still challenging. In this study, CdS nanorod photoanodes loaded with cobalt phosphate (Co...
Gespeichert in:
Veröffentlicht in: | Catalysis letters 2020-07, Vol.150 (7), p.1878-1889 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1889 |
---|---|
container_issue | 7 |
container_start_page | 1878 |
container_title | Catalysis letters |
container_volume | 150 |
creator | Song, Zhimin Zhu, Xiaodi Zeng, Yusheng Wang, Azhu Li, Shikuo Fan, Yi Cai, Mengdie Cheng, Qin Wei, Yuxue Sun, Song |
description | Cocatalysts play important roles in photocatalytic and photoelectrochemical water splitting reactions. However, the formation of well-defined junctions between low dimensional semiconductors and cocatalysts is still challenging. In this study, CdS nanorod photoanodes loaded with cobalt phosphate (CoPi) cocatalyst were synthesized by a facile two-step route, in which CdS nanorods were prepared using a hydrothermal method followed by photo-assisted electrodeposition of CoPi. It was found that the formation of intimate junctions between CoPi and CdS nanorods in the form of Co–S bonding effectively facilitated the charge separation and lowered the activation energy of the water oxidation reaction. This resulted in highly efficient and stable photoelectrochemical water splitting on the CdS photoanode. The optimal CdS/CoPi photoanode showed a maximum photocurrent of 4.7 mA/cm
2
at 0 V versus reversible hydrogen electrode under an AM 1.5 G solar simulator, which was 5.5-fold higher than that of bare CdS photoanode. This work expands the potential application of the cocatalyst CoPi in CdS photoanode systems and improves our understanding of the nature of cocatalysts with well-defined interface junctions in semiconductors.
Graphic Abstract
Well-defined interfacial junction with Co–S bonding over cobalt phosphate cocatalyzed CdS nanorod photoanode facilitates the charge separation and lowers the activation energy, thus achieving a considerable photocurrent of 4.7 mA/cm
2
at 0 V vs. RHE. |
doi_str_mv | 10.1007/s10562-019-03084-z |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2404532846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A624443471</galeid><sourcerecordid>A624443471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-c57d8efdeb16c6c13527d27e62a7085ca4fdff8227f2e469c0ce2318c845cb8a3</originalsourceid><addsrcrecordid>eNp9kUFvFCEUxydGE2v1C3gi8eSBCgwzzBybtdqajRpX094IC48ZGgorsNHtl_AryzomphfDgZeX34_3yL9pXlJyRgkRbzIlXc8woSMmLRk4vn_UnNBOMDyI8eZxrQmluBXs5mnzLOdbQsgo6HjS_FrFrfIFfZ5j3s2qAFpFrYryh1zQOioDBq_MBn1UIaZojlyJtTaAfrgyo2vwHr8F6wIY9GEfdHExZGRjQpdumv0BXVjrtINQFhc86JKinuHOaeXRdZ2Z0GbnXSkuTM-bJ1b5DC_-3qfNt3cXX1eXeP3p_dXqfI01Z2PBuhNmAGtgS3vda9p2TBgmoGdKkKHTiltj7cCYsAx4P2qigbV00APv9HZQ7Wnzanl3l-L3PeQib-M-hTpSMk5417KB95U6W6hJeZAu2FiS0vWY4_Yx1H_X_nnPOOctF7QKrx8IlSnws0xqn7O82nx5yLKF1SnmnMDKXXJ3Kh0kJfKYqlxSlTVV-SdVeV-ldpFyhcME6d_e_7F-AwB8p58</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2404532846</pqid></control><display><type>article</type><title>Cobalt Phosphate Cocatalyst Loaded-CdS Nanorod Photoanode with Well-Defined Junctions for Highly Efficient Photoelectrochemical Water Splitting</title><source>SpringerLink (Online service)</source><creator>Song, Zhimin ; Zhu, Xiaodi ; Zeng, Yusheng ; Wang, Azhu ; Li, Shikuo ; Fan, Yi ; Cai, Mengdie ; Cheng, Qin ; Wei, Yuxue ; Sun, Song</creator><creatorcontrib>Song, Zhimin ; Zhu, Xiaodi ; Zeng, Yusheng ; Wang, Azhu ; Li, Shikuo ; Fan, Yi ; Cai, Mengdie ; Cheng, Qin ; Wei, Yuxue ; Sun, Song</creatorcontrib><description>Cocatalysts play important roles in photocatalytic and photoelectrochemical water splitting reactions. However, the formation of well-defined junctions between low dimensional semiconductors and cocatalysts is still challenging. In this study, CdS nanorod photoanodes loaded with cobalt phosphate (CoPi) cocatalyst were synthesized by a facile two-step route, in which CdS nanorods were prepared using a hydrothermal method followed by photo-assisted electrodeposition of CoPi. It was found that the formation of intimate junctions between CoPi and CdS nanorods in the form of Co–S bonding effectively facilitated the charge separation and lowered the activation energy of the water oxidation reaction. This resulted in highly efficient and stable photoelectrochemical water splitting on the CdS photoanode. The optimal CdS/CoPi photoanode showed a maximum photocurrent of 4.7 mA/cm
2
at 0 V versus reversible hydrogen electrode under an AM 1.5 G solar simulator, which was 5.5-fold higher than that of bare CdS photoanode. This work expands the potential application of the cocatalyst CoPi in CdS photoanode systems and improves our understanding of the nature of cocatalysts with well-defined interface junctions in semiconductors.
Graphic Abstract
Well-defined interfacial junction with Co–S bonding over cobalt phosphate cocatalyzed CdS nanorod photoanode facilitates the charge separation and lowers the activation energy, thus achieving a considerable photocurrent of 4.7 mA/cm
2
at 0 V vs. RHE.</description><identifier>ISSN: 1011-372X</identifier><identifier>EISSN: 1572-879X</identifier><identifier>DOI: 10.1007/s10562-019-03084-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Activation energy ; Bonding ; Catalysis ; Chemistry ; Chemistry and Materials Science ; Cobalt ; Electrochemical reactions ; Industrial Chemistry/Chemical Engineering ; Low dimensional semiconductors ; Nanorods ; Organometallic Chemistry ; Oxidation ; Phosphates ; Photoanodes ; Photoelectric effect ; Photoelectric emission ; Physical Chemistry ; Semiconductors ; Separation ; Water splitting</subject><ispartof>Catalysis letters, 2020-07, Vol.150 (7), p.1878-1889</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-c57d8efdeb16c6c13527d27e62a7085ca4fdff8227f2e469c0ce2318c845cb8a3</citedby><cites>FETCH-LOGICAL-c429t-c57d8efdeb16c6c13527d27e62a7085ca4fdff8227f2e469c0ce2318c845cb8a3</cites><orcidid>0000-0002-3625-7858</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10562-019-03084-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10562-019-03084-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Song, Zhimin</creatorcontrib><creatorcontrib>Zhu, Xiaodi</creatorcontrib><creatorcontrib>Zeng, Yusheng</creatorcontrib><creatorcontrib>Wang, Azhu</creatorcontrib><creatorcontrib>Li, Shikuo</creatorcontrib><creatorcontrib>Fan, Yi</creatorcontrib><creatorcontrib>Cai, Mengdie</creatorcontrib><creatorcontrib>Cheng, Qin</creatorcontrib><creatorcontrib>Wei, Yuxue</creatorcontrib><creatorcontrib>Sun, Song</creatorcontrib><title>Cobalt Phosphate Cocatalyst Loaded-CdS Nanorod Photoanode with Well-Defined Junctions for Highly Efficient Photoelectrochemical Water Splitting</title><title>Catalysis letters</title><addtitle>Catal Lett</addtitle><description>Cocatalysts play important roles in photocatalytic and photoelectrochemical water splitting reactions. However, the formation of well-defined junctions between low dimensional semiconductors and cocatalysts is still challenging. In this study, CdS nanorod photoanodes loaded with cobalt phosphate (CoPi) cocatalyst were synthesized by a facile two-step route, in which CdS nanorods were prepared using a hydrothermal method followed by photo-assisted electrodeposition of CoPi. It was found that the formation of intimate junctions between CoPi and CdS nanorods in the form of Co–S bonding effectively facilitated the charge separation and lowered the activation energy of the water oxidation reaction. This resulted in highly efficient and stable photoelectrochemical water splitting on the CdS photoanode. The optimal CdS/CoPi photoanode showed a maximum photocurrent of 4.7 mA/cm
2
at 0 V versus reversible hydrogen electrode under an AM 1.5 G solar simulator, which was 5.5-fold higher than that of bare CdS photoanode. This work expands the potential application of the cocatalyst CoPi in CdS photoanode systems and improves our understanding of the nature of cocatalysts with well-defined interface junctions in semiconductors.
Graphic Abstract
Well-defined interfacial junction with Co–S bonding over cobalt phosphate cocatalyzed CdS nanorod photoanode facilitates the charge separation and lowers the activation energy, thus achieving a considerable photocurrent of 4.7 mA/cm
2
at 0 V vs. RHE.</description><subject>Activation energy</subject><subject>Bonding</subject><subject>Catalysis</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Cobalt</subject><subject>Electrochemical reactions</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Low dimensional semiconductors</subject><subject>Nanorods</subject><subject>Organometallic Chemistry</subject><subject>Oxidation</subject><subject>Phosphates</subject><subject>Photoanodes</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>Physical Chemistry</subject><subject>Semiconductors</subject><subject>Separation</subject><subject>Water splitting</subject><issn>1011-372X</issn><issn>1572-879X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kUFvFCEUxydGE2v1C3gi8eSBCgwzzBybtdqajRpX094IC48ZGgorsNHtl_AryzomphfDgZeX34_3yL9pXlJyRgkRbzIlXc8woSMmLRk4vn_UnNBOMDyI8eZxrQmluBXs5mnzLOdbQsgo6HjS_FrFrfIFfZ5j3s2qAFpFrYryh1zQOioDBq_MBn1UIaZojlyJtTaAfrgyo2vwHr8F6wIY9GEfdHExZGRjQpdumv0BXVjrtINQFhc86JKinuHOaeXRdZ2Z0GbnXSkuTM-bJ1b5DC_-3qfNt3cXX1eXeP3p_dXqfI01Z2PBuhNmAGtgS3vda9p2TBgmoGdKkKHTiltj7cCYsAx4P2qigbV00APv9HZQ7Wnzanl3l-L3PeQib-M-hTpSMk5417KB95U6W6hJeZAu2FiS0vWY4_Yx1H_X_nnPOOctF7QKrx8IlSnws0xqn7O82nx5yLKF1SnmnMDKXXJ3Kh0kJfKYqlxSlTVV-SdVeV-ldpFyhcME6d_e_7F-AwB8p58</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Song, Zhimin</creator><creator>Zhu, Xiaodi</creator><creator>Zeng, Yusheng</creator><creator>Wang, Azhu</creator><creator>Li, Shikuo</creator><creator>Fan, Yi</creator><creator>Cai, Mengdie</creator><creator>Cheng, Qin</creator><creator>Wei, Yuxue</creator><creator>Sun, Song</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-3625-7858</orcidid></search><sort><creationdate>20200701</creationdate><title>Cobalt Phosphate Cocatalyst Loaded-CdS Nanorod Photoanode with Well-Defined Junctions for Highly Efficient Photoelectrochemical Water Splitting</title><author>Song, Zhimin ; Zhu, Xiaodi ; Zeng, Yusheng ; Wang, Azhu ; Li, Shikuo ; Fan, Yi ; Cai, Mengdie ; Cheng, Qin ; Wei, Yuxue ; Sun, Song</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-c57d8efdeb16c6c13527d27e62a7085ca4fdff8227f2e469c0ce2318c845cb8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Activation energy</topic><topic>Bonding</topic><topic>Catalysis</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Cobalt</topic><topic>Electrochemical reactions</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Low dimensional semiconductors</topic><topic>Nanorods</topic><topic>Organometallic Chemistry</topic><topic>Oxidation</topic><topic>Phosphates</topic><topic>Photoanodes</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>Physical Chemistry</topic><topic>Semiconductors</topic><topic>Separation</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Zhimin</creatorcontrib><creatorcontrib>Zhu, Xiaodi</creatorcontrib><creatorcontrib>Zeng, Yusheng</creatorcontrib><creatorcontrib>Wang, Azhu</creatorcontrib><creatorcontrib>Li, Shikuo</creatorcontrib><creatorcontrib>Fan, Yi</creatorcontrib><creatorcontrib>Cai, Mengdie</creatorcontrib><creatorcontrib>Cheng, Qin</creatorcontrib><creatorcontrib>Wei, Yuxue</creatorcontrib><creatorcontrib>Sun, Song</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Catalysis letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Zhimin</au><au>Zhu, Xiaodi</au><au>Zeng, Yusheng</au><au>Wang, Azhu</au><au>Li, Shikuo</au><au>Fan, Yi</au><au>Cai, Mengdie</au><au>Cheng, Qin</au><au>Wei, Yuxue</au><au>Sun, Song</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cobalt Phosphate Cocatalyst Loaded-CdS Nanorod Photoanode with Well-Defined Junctions for Highly Efficient Photoelectrochemical Water Splitting</atitle><jtitle>Catalysis letters</jtitle><stitle>Catal Lett</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>150</volume><issue>7</issue><spage>1878</spage><epage>1889</epage><pages>1878-1889</pages><issn>1011-372X</issn><eissn>1572-879X</eissn><abstract>Cocatalysts play important roles in photocatalytic and photoelectrochemical water splitting reactions. However, the formation of well-defined junctions between low dimensional semiconductors and cocatalysts is still challenging. In this study, CdS nanorod photoanodes loaded with cobalt phosphate (CoPi) cocatalyst were synthesized by a facile two-step route, in which CdS nanorods were prepared using a hydrothermal method followed by photo-assisted electrodeposition of CoPi. It was found that the formation of intimate junctions between CoPi and CdS nanorods in the form of Co–S bonding effectively facilitated the charge separation and lowered the activation energy of the water oxidation reaction. This resulted in highly efficient and stable photoelectrochemical water splitting on the CdS photoanode. The optimal CdS/CoPi photoanode showed a maximum photocurrent of 4.7 mA/cm
2
at 0 V versus reversible hydrogen electrode under an AM 1.5 G solar simulator, which was 5.5-fold higher than that of bare CdS photoanode. This work expands the potential application of the cocatalyst CoPi in CdS photoanode systems and improves our understanding of the nature of cocatalysts with well-defined interface junctions in semiconductors.
Graphic Abstract
Well-defined interfacial junction with Co–S bonding over cobalt phosphate cocatalyzed CdS nanorod photoanode facilitates the charge separation and lowers the activation energy, thus achieving a considerable photocurrent of 4.7 mA/cm
2
at 0 V vs. RHE.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10562-019-03084-z</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3625-7858</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1011-372X |
ispartof | Catalysis letters, 2020-07, Vol.150 (7), p.1878-1889 |
issn | 1011-372X 1572-879X |
language | eng |
recordid | cdi_proquest_journals_2404532846 |
source | SpringerLink (Online service) |
subjects | Activation energy Bonding Catalysis Chemistry Chemistry and Materials Science Cobalt Electrochemical reactions Industrial Chemistry/Chemical Engineering Low dimensional semiconductors Nanorods Organometallic Chemistry Oxidation Phosphates Photoanodes Photoelectric effect Photoelectric emission Physical Chemistry Semiconductors Separation Water splitting |
title | Cobalt Phosphate Cocatalyst Loaded-CdS Nanorod Photoanode with Well-Defined Junctions for Highly Efficient Photoelectrochemical Water Splitting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T08%3A03%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cobalt%20Phosphate%20Cocatalyst%20Loaded-CdS%20Nanorod%20Photoanode%20with%20Well-Defined%20Junctions%20for%20Highly%20Efficient%20Photoelectrochemical%20Water%20Splitting&rft.jtitle=Catalysis%20letters&rft.au=Song,%20Zhimin&rft.date=2020-07-01&rft.volume=150&rft.issue=7&rft.spage=1878&rft.epage=1889&rft.pages=1878-1889&rft.issn=1011-372X&rft.eissn=1572-879X&rft_id=info:doi/10.1007/s10562-019-03084-z&rft_dat=%3Cgale_proqu%3EA624443471%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2404532846&rft_id=info:pmid/&rft_galeid=A624443471&rfr_iscdi=true |