Large-Scale Object Detection in the Wild from Imbalanced Multi-Labels
Training with more data has always been the most stable and effective way of improving performance in deep learning era. As the largest object detection dataset so far, Open Images brings great opportunities and challenges for object detection in general and sophisticated scenarios. However, owing t...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-05 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Peng, Junran Bu, Xingyuan Sun, Ming Zhang, Zhaoxiang Tan, Tieniu Yan, Junjie |
description | Training with more data has always been the most stable and effective way of improving performance in deep learning era. As the largest object detection dataset so far, Open Images brings great opportunities and challenges for object detection in general and sophisticated scenarios. However, owing to its semi-automatic collecting and labeling pipeline to deal with the huge data scale, Open Images dataset suffers from label-related problems that objects may explicitly or implicitly have multiple labels and the label distribution is extremely imbalanced. In this work, we quantitatively analyze these label problems and provide a simple but effective solution. We design a concurrent softmax to handle the multi-label problems in object detection and propose a soft-sampling methods with hybrid training scheduler to deal with the label imbalance. Overall, our method yields a dramatic improvement of 3.34 points, leading to the best single model with 60.90 mAP on the public object detection test set of Open Images. And our ensembling result achieves 67.17 mAP, which is 4.29 points higher than the best result of Open Images public test 2018. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2404501959</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2404501959</sourcerecordid><originalsourceid>FETCH-proquest_journals_24045019593</originalsourceid><addsrcrecordid>eNqNykELgjAYgOERBEn5Hz7oPJjTVZ7LKDA6FHSUqZ81mVtt8__noR_Q6Tm874xEPE0Tuss4X5DY-54xxjdbLkQakaKU7on01kiNcK17bAIcMEwoa0AZCC-Eh9ItdM4OcB5qqaVpsIXLqIOipaxR-xWZd1J7jH8uyfpY3Pcn-nb2M6IPVW9HZ6ZU8YxlgiW5yNP_ri_vPTnV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2404501959</pqid></control><display><type>article</type><title>Large-Scale Object Detection in the Wild from Imbalanced Multi-Labels</title><source>Free E- Journals</source><creator>Peng, Junran ; Bu, Xingyuan ; Sun, Ming ; Zhang, Zhaoxiang ; Tan, Tieniu ; Yan, Junjie</creator><creatorcontrib>Peng, Junran ; Bu, Xingyuan ; Sun, Ming ; Zhang, Zhaoxiang ; Tan, Tieniu ; Yan, Junjie</creatorcontrib><description>Training with more data has always been the most stable and effective way of improving performance in deep learning era. As the largest object detection dataset so far, Open Images brings great opportunities and challenges for object detection in general and sophisticated scenarios. However, owing to its semi-automatic collecting and labeling pipeline to deal with the huge data scale, Open Images dataset suffers from label-related problems that objects may explicitly or implicitly have multiple labels and the label distribution is extremely imbalanced. In this work, we quantitatively analyze these label problems and provide a simple but effective solution. We design a concurrent softmax to handle the multi-label problems in object detection and propose a soft-sampling methods with hybrid training scheduler to deal with the label imbalance. Overall, our method yields a dramatic improvement of 3.34 points, leading to the best single model with 60.90 mAP on the public object detection test set of Open Images. And our ensembling result achieves 67.17 mAP, which is 4.29 points higher than the best result of Open Images public test 2018.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Datasets ; Image detection ; Labels ; Machine learning ; Object recognition ; Training</subject><ispartof>arXiv.org, 2020-05</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Peng, Junran</creatorcontrib><creatorcontrib>Bu, Xingyuan</creatorcontrib><creatorcontrib>Sun, Ming</creatorcontrib><creatorcontrib>Zhang, Zhaoxiang</creatorcontrib><creatorcontrib>Tan, Tieniu</creatorcontrib><creatorcontrib>Yan, Junjie</creatorcontrib><title>Large-Scale Object Detection in the Wild from Imbalanced Multi-Labels</title><title>arXiv.org</title><description>Training with more data has always been the most stable and effective way of improving performance in deep learning era. As the largest object detection dataset so far, Open Images brings great opportunities and challenges for object detection in general and sophisticated scenarios. However, owing to its semi-automatic collecting and labeling pipeline to deal with the huge data scale, Open Images dataset suffers from label-related problems that objects may explicitly or implicitly have multiple labels and the label distribution is extremely imbalanced. In this work, we quantitatively analyze these label problems and provide a simple but effective solution. We design a concurrent softmax to handle the multi-label problems in object detection and propose a soft-sampling methods with hybrid training scheduler to deal with the label imbalance. Overall, our method yields a dramatic improvement of 3.34 points, leading to the best single model with 60.90 mAP on the public object detection test set of Open Images. And our ensembling result achieves 67.17 mAP, which is 4.29 points higher than the best result of Open Images public test 2018.</description><subject>Datasets</subject><subject>Image detection</subject><subject>Labels</subject><subject>Machine learning</subject><subject>Object recognition</subject><subject>Training</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNykELgjAYgOERBEn5Hz7oPJjTVZ7LKDA6FHSUqZ81mVtt8__noR_Q6Tm874xEPE0Tuss4X5DY-54xxjdbLkQakaKU7on01kiNcK17bAIcMEwoa0AZCC-Eh9ItdM4OcB5qqaVpsIXLqIOipaxR-xWZd1J7jH8uyfpY3Pcn-nb2M6IPVW9HZ6ZU8YxlgiW5yNP_ri_vPTnV</recordid><startdate>20200518</startdate><enddate>20200518</enddate><creator>Peng, Junran</creator><creator>Bu, Xingyuan</creator><creator>Sun, Ming</creator><creator>Zhang, Zhaoxiang</creator><creator>Tan, Tieniu</creator><creator>Yan, Junjie</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200518</creationdate><title>Large-Scale Object Detection in the Wild from Imbalanced Multi-Labels</title><author>Peng, Junran ; Bu, Xingyuan ; Sun, Ming ; Zhang, Zhaoxiang ; Tan, Tieniu ; Yan, Junjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24045019593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Datasets</topic><topic>Image detection</topic><topic>Labels</topic><topic>Machine learning</topic><topic>Object recognition</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Peng, Junran</creatorcontrib><creatorcontrib>Bu, Xingyuan</creatorcontrib><creatorcontrib>Sun, Ming</creatorcontrib><creatorcontrib>Zhang, Zhaoxiang</creatorcontrib><creatorcontrib>Tan, Tieniu</creatorcontrib><creatorcontrib>Yan, Junjie</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Junran</au><au>Bu, Xingyuan</au><au>Sun, Ming</au><au>Zhang, Zhaoxiang</au><au>Tan, Tieniu</au><au>Yan, Junjie</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Large-Scale Object Detection in the Wild from Imbalanced Multi-Labels</atitle><jtitle>arXiv.org</jtitle><date>2020-05-18</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>Training with more data has always been the most stable and effective way of improving performance in deep learning era. As the largest object detection dataset so far, Open Images brings great opportunities and challenges for object detection in general and sophisticated scenarios. However, owing to its semi-automatic collecting and labeling pipeline to deal with the huge data scale, Open Images dataset suffers from label-related problems that objects may explicitly or implicitly have multiple labels and the label distribution is extremely imbalanced. In this work, we quantitatively analyze these label problems and provide a simple but effective solution. We design a concurrent softmax to handle the multi-label problems in object detection and propose a soft-sampling methods with hybrid training scheduler to deal with the label imbalance. Overall, our method yields a dramatic improvement of 3.34 points, leading to the best single model with 60.90 mAP on the public object detection test set of Open Images. And our ensembling result achieves 67.17 mAP, which is 4.29 points higher than the best result of Open Images public test 2018.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2404501959 |
source | Free E- Journals |
subjects | Datasets Image detection Labels Machine learning Object recognition Training |
title | Large-Scale Object Detection in the Wild from Imbalanced Multi-Labels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T02%3A19%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Large-Scale%20Object%20Detection%20in%20the%20Wild%20from%20Imbalanced%20Multi-Labels&rft.jtitle=arXiv.org&rft.au=Peng,%20Junran&rft.date=2020-05-18&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2404501959%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2404501959&rft_id=info:pmid/&rfr_iscdi=true |