Monitoring the Salt Stability of Layer‐by‐Layer Self‐Assembled Films From Polyelectrolyte Blends by Quartz Crystal Microbalance‐Dissipation and Their Ion Separation Performances
Our study is concerned with the development of a novel type of layer‐by‐layer (LbL) self‐assembled membrane from a single cationic polyelectrolyte (PE) and blended anionic PEs. Their synthetic seawater stability is investigated as a function of PE type and blend ratios using quartz crystal microbala...
Gespeichert in:
Veröffentlicht in: | Polymer engineering and science 2020-05, Vol.60 (5), p.1006-1018 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1018 |
---|---|
container_issue | 5 |
container_start_page | 1006 |
container_title | Polymer engineering and science |
container_volume | 60 |
creator | Ergün, Ayça Tümer, Eda Hazal Cengiz, Hacer Yeşim Deligöz, Hüseyin |
description | Our study is concerned with the development of a novel type of layer‐by‐layer (LbL) self‐assembled membrane from a single cationic polyelectrolyte (PE) and blended anionic PEs. Their synthetic seawater stability is investigated as a function of PE type and blend ratios using quartz crystal microbalance‐dissipation (QCM‐D). These materials adsorbed into multilayers with significant viscoelasticity. Poly(allylamine hydrochloride) (PAH) and poly(vinylamine hydrochloride) (PVA) based LbL blend films did not show any multilayer decomposition with the addition of synthetic seawater regardless of blend ratio while chitosan based multilayers disintegrated. The flux of PVA based blend membrane to water with 1,000 ppm NaCl was found to be 6.7 L/m2.h at 40 bar and the flux properties of the membranes were highly dependent on both the thickness and hydrophilicity of multilayers. Ion rejection can be controlled with the charge of the top layer consistent with a Donnan exclusion approach. Sodium ion rejection of 60.5 layered LbL blend membrane was 98.4% at 40 bar and it was determined that sodium ion rejection improved 110.7% compared to a commercial nanofiltration membrane. POLYM. ENG. SCI., 60:1006–1018, 2020. © 2020 Society of Plastics Engineers |
doi_str_mv | 10.1002/pen.25356 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2404454561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A627001542</galeid><sourcerecordid>A627001542</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5106-35e281a6934ab5db51c2d44dcbe931f4210813ded1b2d2aaddffcdb3b425fb1a3</originalsourceid><addsrcrecordid>eNp1ktGOEyEUhifGTay7XvgGJF6ZOF1gYJxe1rrVJl2tdr2ewHBo2TBQgUbHKx_B1_F1fBLZrYk2qSEBDnz_D8n5i-IpwWOCMb3cgRtTXvH6QTEinDUlrSv2sBhhXNGyaprmUfE4xluc2YpPRsXPa-9M8sG4DUpbQGthE1onIY01aUBeo6UYIPz6_kMOebov0BqszsU0RuilBYXmxvYRzYPv0crbASx0KeRNAvTKglMRyQF92IuQvqFZGGISFl2bLngprHAdZLPXJkazE8l4h4RT6GYLJqBFrtawE-FwsYKgfejvJPGiONPCRnjyZz0vPs2vbmZvy-X7N4vZdFl2nOC6rDjQhoh6UjEhuZKcdFQxpjoJk4poRgluSKVAEUkVFUIprTslK8ko15KI6rx4dvDdBf95DzG1t34fXH6ypQwzxhmvyV9qIyy0xmmfguh6E7t2WtOXGOdm0EyVJ6gNOAjCegfa5OMjfnyCz0NBb7qTgudHgswk-Jo2Yh9ju1h_PGZf_MPKfTQOcg9cNJttigfJKevcthgD6HYXTC_C0BLc3mWvzdlr77OX2csD-yX_b_g_2K6u3h0UvwHIK-BB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2404454561</pqid></control><display><type>article</type><title>Monitoring the Salt Stability of Layer‐by‐Layer Self‐Assembled Films From Polyelectrolyte Blends by Quartz Crystal Microbalance‐Dissipation and Their Ion Separation Performances</title><source>Access via Wiley Online Library</source><creator>Ergün, Ayça ; Tümer, Eda Hazal ; Cengiz, Hacer Yeşim ; Deligöz, Hüseyin</creator><creatorcontrib>Ergün, Ayça ; Tümer, Eda Hazal ; Cengiz, Hacer Yeşim ; Deligöz, Hüseyin</creatorcontrib><description>Our study is concerned with the development of a novel type of layer‐by‐layer (LbL) self‐assembled membrane from a single cationic polyelectrolyte (PE) and blended anionic PEs. Their synthetic seawater stability is investigated as a function of PE type and blend ratios using quartz crystal microbalance‐dissipation (QCM‐D). These materials adsorbed into multilayers with significant viscoelasticity. Poly(allylamine hydrochloride) (PAH) and poly(vinylamine hydrochloride) (PVA) based LbL blend films did not show any multilayer decomposition with the addition of synthetic seawater regardless of blend ratio while chitosan based multilayers disintegrated. The flux of PVA based blend membrane to water with 1,000 ppm NaCl was found to be 6.7 L/m2.h at 40 bar and the flux properties of the membranes were highly dependent on both the thickness and hydrophilicity of multilayers. Ion rejection can be controlled with the charge of the top layer consistent with a Donnan exclusion approach. Sodium ion rejection of 60.5 layered LbL blend membrane was 98.4% at 40 bar and it was determined that sodium ion rejection improved 110.7% compared to a commercial nanofiltration membrane. POLYM. ENG. SCI., 60:1006–1018, 2020. © 2020 Society of Plastics Engineers</description><identifier>ISSN: 0032-3888</identifier><identifier>EISSN: 1548-2634</identifier><identifier>DOI: 10.1002/pen.25356</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Chitosan ; Disintegration ; EDTA ; Membranes ; Microbalances ; Multilayers ; Nanofiltration ; Polyelectrolytes ; Polyethylenes ; Polymers ; Povidone ; Quartz ; Quartz crystals ; Rejection ; Seawater ; Stability ; Surface active agents ; Viscoelasticity</subject><ispartof>Polymer engineering and science, 2020-05, Vol.60 (5), p.1006-1018</ispartof><rights>2020 Society of Plastics Engineers</rights><rights>COPYRIGHT 2020 Society of Plastics Engineers, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5106-35e281a6934ab5db51c2d44dcbe931f4210813ded1b2d2aaddffcdb3b425fb1a3</citedby><cites>FETCH-LOGICAL-c5106-35e281a6934ab5db51c2d44dcbe931f4210813ded1b2d2aaddffcdb3b425fb1a3</cites><orcidid>0000-0002-0915-2911</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpen.25356$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpen.25356$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Ergün, Ayça</creatorcontrib><creatorcontrib>Tümer, Eda Hazal</creatorcontrib><creatorcontrib>Cengiz, Hacer Yeşim</creatorcontrib><creatorcontrib>Deligöz, Hüseyin</creatorcontrib><title>Monitoring the Salt Stability of Layer‐by‐Layer Self‐Assembled Films From Polyelectrolyte Blends by Quartz Crystal Microbalance‐Dissipation and Their Ion Separation Performances</title><title>Polymer engineering and science</title><description>Our study is concerned with the development of a novel type of layer‐by‐layer (LbL) self‐assembled membrane from a single cationic polyelectrolyte (PE) and blended anionic PEs. Their synthetic seawater stability is investigated as a function of PE type and blend ratios using quartz crystal microbalance‐dissipation (QCM‐D). These materials adsorbed into multilayers with significant viscoelasticity. Poly(allylamine hydrochloride) (PAH) and poly(vinylamine hydrochloride) (PVA) based LbL blend films did not show any multilayer decomposition with the addition of synthetic seawater regardless of blend ratio while chitosan based multilayers disintegrated. The flux of PVA based blend membrane to water with 1,000 ppm NaCl was found to be 6.7 L/m2.h at 40 bar and the flux properties of the membranes were highly dependent on both the thickness and hydrophilicity of multilayers. Ion rejection can be controlled with the charge of the top layer consistent with a Donnan exclusion approach. Sodium ion rejection of 60.5 layered LbL blend membrane was 98.4% at 40 bar and it was determined that sodium ion rejection improved 110.7% compared to a commercial nanofiltration membrane. POLYM. ENG. SCI., 60:1006–1018, 2020. © 2020 Society of Plastics Engineers</description><subject>Chitosan</subject><subject>Disintegration</subject><subject>EDTA</subject><subject>Membranes</subject><subject>Microbalances</subject><subject>Multilayers</subject><subject>Nanofiltration</subject><subject>Polyelectrolytes</subject><subject>Polyethylenes</subject><subject>Polymers</subject><subject>Povidone</subject><subject>Quartz</subject><subject>Quartz crystals</subject><subject>Rejection</subject><subject>Seawater</subject><subject>Stability</subject><subject>Surface active agents</subject><subject>Viscoelasticity</subject><issn>0032-3888</issn><issn>1548-2634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNp1ktGOEyEUhifGTay7XvgGJF6ZOF1gYJxe1rrVJl2tdr2ewHBo2TBQgUbHKx_B1_F1fBLZrYk2qSEBDnz_D8n5i-IpwWOCMb3cgRtTXvH6QTEinDUlrSv2sBhhXNGyaprmUfE4xluc2YpPRsXPa-9M8sG4DUpbQGthE1onIY01aUBeo6UYIPz6_kMOebov0BqszsU0RuilBYXmxvYRzYPv0crbASx0KeRNAvTKglMRyQF92IuQvqFZGGISFl2bLngprHAdZLPXJkazE8l4h4RT6GYLJqBFrtawE-FwsYKgfejvJPGiONPCRnjyZz0vPs2vbmZvy-X7N4vZdFl2nOC6rDjQhoh6UjEhuZKcdFQxpjoJk4poRgluSKVAEUkVFUIprTslK8ko15KI6rx4dvDdBf95DzG1t34fXH6ypQwzxhmvyV9qIyy0xmmfguh6E7t2WtOXGOdm0EyVJ6gNOAjCegfa5OMjfnyCz0NBb7qTgudHgswk-Jo2Yh9ju1h_PGZf_MPKfTQOcg9cNJttigfJKevcthgD6HYXTC_C0BLc3mWvzdlr77OX2csD-yX_b_g_2K6u3h0UvwHIK-BB</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Ergün, Ayça</creator><creator>Tümer, Eda Hazal</creator><creator>Cengiz, Hacer Yeşim</creator><creator>Deligöz, Hüseyin</creator><general>John Wiley & Sons, Inc</general><general>Society of Plastics Engineers, Inc</general><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>ISR</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-0915-2911</orcidid></search><sort><creationdate>202005</creationdate><title>Monitoring the Salt Stability of Layer‐by‐Layer Self‐Assembled Films From Polyelectrolyte Blends by Quartz Crystal Microbalance‐Dissipation and Their Ion Separation Performances</title><author>Ergün, Ayça ; Tümer, Eda Hazal ; Cengiz, Hacer Yeşim ; Deligöz, Hüseyin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5106-35e281a6934ab5db51c2d44dcbe931f4210813ded1b2d2aaddffcdb3b425fb1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chitosan</topic><topic>Disintegration</topic><topic>EDTA</topic><topic>Membranes</topic><topic>Microbalances</topic><topic>Multilayers</topic><topic>Nanofiltration</topic><topic>Polyelectrolytes</topic><topic>Polyethylenes</topic><topic>Polymers</topic><topic>Povidone</topic><topic>Quartz</topic><topic>Quartz crystals</topic><topic>Rejection</topic><topic>Seawater</topic><topic>Stability</topic><topic>Surface active agents</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ergün, Ayça</creatorcontrib><creatorcontrib>Tümer, Eda Hazal</creatorcontrib><creatorcontrib>Cengiz, Hacer Yeşim</creatorcontrib><creatorcontrib>Deligöz, Hüseyin</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: Science</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer engineering and science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ergün, Ayça</au><au>Tümer, Eda Hazal</au><au>Cengiz, Hacer Yeşim</au><au>Deligöz, Hüseyin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monitoring the Salt Stability of Layer‐by‐Layer Self‐Assembled Films From Polyelectrolyte Blends by Quartz Crystal Microbalance‐Dissipation and Their Ion Separation Performances</atitle><jtitle>Polymer engineering and science</jtitle><date>2020-05</date><risdate>2020</risdate><volume>60</volume><issue>5</issue><spage>1006</spage><epage>1018</epage><pages>1006-1018</pages><issn>0032-3888</issn><eissn>1548-2634</eissn><abstract>Our study is concerned with the development of a novel type of layer‐by‐layer (LbL) self‐assembled membrane from a single cationic polyelectrolyte (PE) and blended anionic PEs. Their synthetic seawater stability is investigated as a function of PE type and blend ratios using quartz crystal microbalance‐dissipation (QCM‐D). These materials adsorbed into multilayers with significant viscoelasticity. Poly(allylamine hydrochloride) (PAH) and poly(vinylamine hydrochloride) (PVA) based LbL blend films did not show any multilayer decomposition with the addition of synthetic seawater regardless of blend ratio while chitosan based multilayers disintegrated. The flux of PVA based blend membrane to water with 1,000 ppm NaCl was found to be 6.7 L/m2.h at 40 bar and the flux properties of the membranes were highly dependent on both the thickness and hydrophilicity of multilayers. Ion rejection can be controlled with the charge of the top layer consistent with a Donnan exclusion approach. Sodium ion rejection of 60.5 layered LbL blend membrane was 98.4% at 40 bar and it was determined that sodium ion rejection improved 110.7% compared to a commercial nanofiltration membrane. POLYM. ENG. SCI., 60:1006–1018, 2020. © 2020 Society of Plastics Engineers</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/pen.25356</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0915-2911</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-3888 |
ispartof | Polymer engineering and science, 2020-05, Vol.60 (5), p.1006-1018 |
issn | 0032-3888 1548-2634 |
language | eng |
recordid | cdi_proquest_journals_2404454561 |
source | Access via Wiley Online Library |
subjects | Chitosan Disintegration EDTA Membranes Microbalances Multilayers Nanofiltration Polyelectrolytes Polyethylenes Polymers Povidone Quartz Quartz crystals Rejection Seawater Stability Surface active agents Viscoelasticity |
title | Monitoring the Salt Stability of Layer‐by‐Layer Self‐Assembled Films From Polyelectrolyte Blends by Quartz Crystal Microbalance‐Dissipation and Their Ion Separation Performances |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T19%3A32%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monitoring%20the%20Salt%20Stability%20of%20Layer%E2%80%90by%E2%80%90Layer%20Self%E2%80%90Assembled%20Films%20From%20Polyelectrolyte%20Blends%20by%20Quartz%20Crystal%20Microbalance%E2%80%90Dissipation%20and%20Their%20Ion%20Separation%20Performances&rft.jtitle=Polymer%20engineering%20and%20science&rft.au=Erg%C3%BCn,%20Ay%C3%A7a&rft.date=2020-05&rft.volume=60&rft.issue=5&rft.spage=1006&rft.epage=1018&rft.pages=1006-1018&rft.issn=0032-3888&rft.eissn=1548-2634&rft_id=info:doi/10.1002/pen.25356&rft_dat=%3Cgale_proqu%3EA627001542%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2404454561&rft_id=info:pmid/&rft_galeid=A627001542&rfr_iscdi=true |