The U-Lagrangian, Fast Track, and Partial Smoothness of a Prox-regular Function

When restricted to a subspace, a nonsmooth function can be differentiable. It is known that for a nonsmooth convex function and a point, the Euclidean space can be decomposed into two subspaces: U , over which a special Lagrangian can be defined and has nice smooth properties and V , the orthogonal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Set-valued and variational analysis 2020-06, Vol.28 (2), p.369-394
Hauptverfasser: Liu, Shuai, Eberhard, Andrew, Luo, Yousong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:When restricted to a subspace, a nonsmooth function can be differentiable. It is known that for a nonsmooth convex function and a point, the Euclidean space can be decomposed into two subspaces: U , over which a special Lagrangian can be defined and has nice smooth properties and V , the orthogonal complement subspace of U . In this paper we generalize the definition of V U -decomposition and U -Lagrangian to prox-regular functions and show that the closely related notions fast track and partial smoothness are equivalent under some conditions. Some connections with tilt stability are discussed.
ISSN:1877-0533
1877-0541
DOI:10.1007/s11228-019-00518-z