Complexity in human transportation networks: a comparative analysis of worldwide air transportation and global cargo-ship movements

We present a comparative network-theoretic analysis of the two largest global transportation networks: the worldwide air-transportation network (WAN) and the global cargo-ship network (GCSN). We show that both networks exhibit surprising statistical similarities despite significant differences in to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. B, Condensed matter physics Condensed matter physics, 2011-12, Vol.84 (4), p.589-600
Hauptverfasser: Woolley-Meza, O., Thiemann, C., Grady, D., Lee, J. J., Seebens, H., Blasius, B., Brockmann, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 600
container_issue 4
container_start_page 589
container_title The European physical journal. B, Condensed matter physics
container_volume 84
creator Woolley-Meza, O.
Thiemann, C.
Grady, D.
Lee, J. J.
Seebens, H.
Blasius, B.
Brockmann, D.
description We present a comparative network-theoretic analysis of the two largest global transportation networks: the worldwide air-transportation network (WAN) and the global cargo-ship network (GCSN). We show that both networks exhibit surprising statistical similarities despite significant differences in topology and connectivity. Both networks exhibit a discontinuity in node and link betweenness distributions which implies that these networks naturally segregate into two different classes of nodes and links. We introduce a technique based on effective distances, shortest paths and shortest path trees for strongly weighted symmetric networks and show that in a shortest path tree representation the most significant features of both networks can be readily seen. We show that effective shortest path distance, unlike conventional geographic distance measures, strongly correlates with node centrality measures. Using the new technique we show that network resilience can be investigated more precisely than with contemporary techniques that are based on percolation theory. We extract a functional relationship between node characteristics and resilience to network disruption. Finally we discuss the results, their implications and conclude that dynamic processes that evolve on both networks are expected to share universal dynamic characteristics.
doi_str_mv 10.1140/epjb/e2011-20208-9
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2404396894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A355776848</galeid><sourcerecordid>A355776848</sourcerecordid><originalsourceid>FETCH-LOGICAL-c532t-ab2deb2de39f39ef184e49ac395a5a989ef9d5669294c35a7059fbadc91d54883</originalsourceid><addsrcrecordid>eNp9kUtr3DAUhU1poWnaP9CVoHTRhRM9PVZ3YegjEAj0sRZ35GtHU1tyJU2SWfePV86ElGRRhNDl6LsHXZ2qesvoCWOSnuK83Zwip4zVnHLa1vpZdcSkkHVDRfP8oebty-pVSltKKWuYPKr-rMM0j3jr8p44T652E3iSI_g0h5ghu-CJx3wT4q_0kQCxBYdY9Gsk4GHcJ5dI6EkBxu7GdUV18akB-I4MY9jASCzEIdTpys1kCtc4oc_pdfWihzHhm_vzuPr5-dOP9df64vLL-frsorZK8FzDhne4bKF7obFnrUSpwQqtQIFui6Q71TSaa2mFghVVut9AZzXrlGxbcVy9O_jOMfzeYcpmG3axDJEMl1QK3bRaFurkQA0wonG-D2UaW1aHk7PBY--KfiaUWq2aVi62Hx41FCbjbR5gl5I5__7tMcsPrI0hpYi9maObIO4No2ZJ0ixJmrskzV2SRpem9_fvhmRh7MvnWpceOrkSUnO2mIsDl8qVHzD-m-8_7n8Bc0mysQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2404396894</pqid></control><display><type>article</type><title>Complexity in human transportation networks: a comparative analysis of worldwide air transportation and global cargo-ship movements</title><source>SpringerNature Journals</source><creator>Woolley-Meza, O. ; Thiemann, C. ; Grady, D. ; Lee, J. J. ; Seebens, H. ; Blasius, B. ; Brockmann, D.</creator><creatorcontrib>Woolley-Meza, O. ; Thiemann, C. ; Grady, D. ; Lee, J. J. ; Seebens, H. ; Blasius, B. ; Brockmann, D.</creatorcontrib><description>We present a comparative network-theoretic analysis of the two largest global transportation networks: the worldwide air-transportation network (WAN) and the global cargo-ship network (GCSN). We show that both networks exhibit surprising statistical similarities despite significant differences in topology and connectivity. Both networks exhibit a discontinuity in node and link betweenness distributions which implies that these networks naturally segregate into two different classes of nodes and links. We introduce a technique based on effective distances, shortest paths and shortest path trees for strongly weighted symmetric networks and show that in a shortest path tree representation the most significant features of both networks can be readily seen. We show that effective shortest path distance, unlike conventional geographic distance measures, strongly correlates with node centrality measures. Using the new technique we show that network resilience can be investigated more precisely than with contemporary techniques that are based on percolation theory. We extract a functional relationship between node characteristics and resilience to network disruption. Finally we discuss the results, their implications and conclude that dynamic processes that evolve on both networks are expected to share universal dynamic characteristics.</description><identifier>ISSN: 1434-6028</identifier><identifier>EISSN: 1434-6036</identifier><identifier>DOI: 10.1140/epjb/e2011-20208-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Aeronautics ; Air freight ; Air transportation ; Air transportation and traffic ; Analysis ; Applied sciences ; Cargo ships ; Complex Systems ; Condensed Matter Physics ; Correlation analysis ; Distance measurement ; Dynamic characteristics ; Exact sciences and technology ; Fluid- and Aerodynamics ; Ground, air and sea transportation, marine construction ; Marine and water way transportation and traffic ; Nodes ; Operational research and scientific management ; Operational research. Management science ; Percolation theory ; Physics ; Physics and Astronomy ; Regular Article ; Resilience ; Risk theory. Actuarial science ; Shortest-path problems ; Solid State Physics ; Topology ; Transportation networks ; Transportation planning, management and economics ; Wide area networks</subject><ispartof>The European physical journal. B, Condensed matter physics, 2011-12, Vol.84 (4), p.589-600</ispartof><rights>EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2011 Springer</rights><rights>EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c532t-ab2deb2de39f39ef184e49ac395a5a989ef9d5669294c35a7059fbadc91d54883</citedby><cites>FETCH-LOGICAL-c532t-ab2deb2de39f39ef184e49ac395a5a989ef9d5669294c35a7059fbadc91d54883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjb/e2011-20208-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epjb/e2011-20208-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25349218$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Woolley-Meza, O.</creatorcontrib><creatorcontrib>Thiemann, C.</creatorcontrib><creatorcontrib>Grady, D.</creatorcontrib><creatorcontrib>Lee, J. J.</creatorcontrib><creatorcontrib>Seebens, H.</creatorcontrib><creatorcontrib>Blasius, B.</creatorcontrib><creatorcontrib>Brockmann, D.</creatorcontrib><title>Complexity in human transportation networks: a comparative analysis of worldwide air transportation and global cargo-ship movements</title><title>The European physical journal. B, Condensed matter physics</title><addtitle>Eur. Phys. J. B</addtitle><description>We present a comparative network-theoretic analysis of the two largest global transportation networks: the worldwide air-transportation network (WAN) and the global cargo-ship network (GCSN). We show that both networks exhibit surprising statistical similarities despite significant differences in topology and connectivity. Both networks exhibit a discontinuity in node and link betweenness distributions which implies that these networks naturally segregate into two different classes of nodes and links. We introduce a technique based on effective distances, shortest paths and shortest path trees for strongly weighted symmetric networks and show that in a shortest path tree representation the most significant features of both networks can be readily seen. We show that effective shortest path distance, unlike conventional geographic distance measures, strongly correlates with node centrality measures. Using the new technique we show that network resilience can be investigated more precisely than with contemporary techniques that are based on percolation theory. We extract a functional relationship between node characteristics and resilience to network disruption. Finally we discuss the results, their implications and conclude that dynamic processes that evolve on both networks are expected to share universal dynamic characteristics.</description><subject>Aeronautics</subject><subject>Air freight</subject><subject>Air transportation</subject><subject>Air transportation and traffic</subject><subject>Analysis</subject><subject>Applied sciences</subject><subject>Cargo ships</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Correlation analysis</subject><subject>Distance measurement</subject><subject>Dynamic characteristics</subject><subject>Exact sciences and technology</subject><subject>Fluid- and Aerodynamics</subject><subject>Ground, air and sea transportation, marine construction</subject><subject>Marine and water way transportation and traffic</subject><subject>Nodes</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Percolation theory</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Regular Article</subject><subject>Resilience</subject><subject>Risk theory. Actuarial science</subject><subject>Shortest-path problems</subject><subject>Solid State Physics</subject><subject>Topology</subject><subject>Transportation networks</subject><subject>Transportation planning, management and economics</subject><subject>Wide area networks</subject><issn>1434-6028</issn><issn>1434-6036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kUtr3DAUhU1poWnaP9CVoHTRhRM9PVZ3YegjEAj0sRZ35GtHU1tyJU2SWfePV86ElGRRhNDl6LsHXZ2qesvoCWOSnuK83Zwip4zVnHLa1vpZdcSkkHVDRfP8oebty-pVSltKKWuYPKr-rMM0j3jr8p44T652E3iSI_g0h5ghu-CJx3wT4q_0kQCxBYdY9Gsk4GHcJ5dI6EkBxu7GdUV18akB-I4MY9jASCzEIdTpys1kCtc4oc_pdfWihzHhm_vzuPr5-dOP9df64vLL-frsorZK8FzDhne4bKF7obFnrUSpwQqtQIFui6Q71TSaa2mFghVVut9AZzXrlGxbcVy9O_jOMfzeYcpmG3axDJEMl1QK3bRaFurkQA0wonG-D2UaW1aHk7PBY--KfiaUWq2aVi62Hx41FCbjbR5gl5I5__7tMcsPrI0hpYi9maObIO4No2ZJ0ixJmrskzV2SRpem9_fvhmRh7MvnWpceOrkSUnO2mIsDl8qVHzD-m-8_7n8Bc0mysQ</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Woolley-Meza, O.</creator><creator>Thiemann, C.</creator><creator>Grady, D.</creator><creator>Lee, J. J.</creator><creator>Seebens, H.</creator><creator>Blasius, B.</creator><creator>Brockmann, D.</creator><general>Springer-Verlag</general><general>EDP Sciences</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20111201</creationdate><title>Complexity in human transportation networks: a comparative analysis of worldwide air transportation and global cargo-ship movements</title><author>Woolley-Meza, O. ; Thiemann, C. ; Grady, D. ; Lee, J. J. ; Seebens, H. ; Blasius, B. ; Brockmann, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c532t-ab2deb2de39f39ef184e49ac395a5a989ef9d5669294c35a7059fbadc91d54883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Aeronautics</topic><topic>Air freight</topic><topic>Air transportation</topic><topic>Air transportation and traffic</topic><topic>Analysis</topic><topic>Applied sciences</topic><topic>Cargo ships</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Correlation analysis</topic><topic>Distance measurement</topic><topic>Dynamic characteristics</topic><topic>Exact sciences and technology</topic><topic>Fluid- and Aerodynamics</topic><topic>Ground, air and sea transportation, marine construction</topic><topic>Marine and water way transportation and traffic</topic><topic>Nodes</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Percolation theory</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Regular Article</topic><topic>Resilience</topic><topic>Risk theory. Actuarial science</topic><topic>Shortest-path problems</topic><topic>Solid State Physics</topic><topic>Topology</topic><topic>Transportation networks</topic><topic>Transportation planning, management and economics</topic><topic>Wide area networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Woolley-Meza, O.</creatorcontrib><creatorcontrib>Thiemann, C.</creatorcontrib><creatorcontrib>Grady, D.</creatorcontrib><creatorcontrib>Lee, J. J.</creatorcontrib><creatorcontrib>Seebens, H.</creatorcontrib><creatorcontrib>Blasius, B.</creatorcontrib><creatorcontrib>Brockmann, D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>The European physical journal. B, Condensed matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Woolley-Meza, O.</au><au>Thiemann, C.</au><au>Grady, D.</au><au>Lee, J. J.</au><au>Seebens, H.</au><au>Blasius, B.</au><au>Brockmann, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complexity in human transportation networks: a comparative analysis of worldwide air transportation and global cargo-ship movements</atitle><jtitle>The European physical journal. B, Condensed matter physics</jtitle><stitle>Eur. Phys. J. B</stitle><date>2011-12-01</date><risdate>2011</risdate><volume>84</volume><issue>4</issue><spage>589</spage><epage>600</epage><pages>589-600</pages><issn>1434-6028</issn><eissn>1434-6036</eissn><abstract>We present a comparative network-theoretic analysis of the two largest global transportation networks: the worldwide air-transportation network (WAN) and the global cargo-ship network (GCSN). We show that both networks exhibit surprising statistical similarities despite significant differences in topology and connectivity. Both networks exhibit a discontinuity in node and link betweenness distributions which implies that these networks naturally segregate into two different classes of nodes and links. We introduce a technique based on effective distances, shortest paths and shortest path trees for strongly weighted symmetric networks and show that in a shortest path tree representation the most significant features of both networks can be readily seen. We show that effective shortest path distance, unlike conventional geographic distance measures, strongly correlates with node centrality measures. Using the new technique we show that network resilience can be investigated more precisely than with contemporary techniques that are based on percolation theory. We extract a functional relationship between node characteristics and resilience to network disruption. Finally we discuss the results, their implications and conclude that dynamic processes that evolve on both networks are expected to share universal dynamic characteristics.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1140/epjb/e2011-20208-9</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1434-6028
ispartof The European physical journal. B, Condensed matter physics, 2011-12, Vol.84 (4), p.589-600
issn 1434-6028
1434-6036
language eng
recordid cdi_proquest_journals_2404396894
source SpringerNature Journals
subjects Aeronautics
Air freight
Air transportation
Air transportation and traffic
Analysis
Applied sciences
Cargo ships
Complex Systems
Condensed Matter Physics
Correlation analysis
Distance measurement
Dynamic characteristics
Exact sciences and technology
Fluid- and Aerodynamics
Ground, air and sea transportation, marine construction
Marine and water way transportation and traffic
Nodes
Operational research and scientific management
Operational research. Management science
Percolation theory
Physics
Physics and Astronomy
Regular Article
Resilience
Risk theory. Actuarial science
Shortest-path problems
Solid State Physics
Topology
Transportation networks
Transportation planning, management and economics
Wide area networks
title Complexity in human transportation networks: a comparative analysis of worldwide air transportation and global cargo-ship movements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A02%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complexity%20in%20human%20transportation%20networks:%20a%20comparative%20analysis%20of%20worldwide%20air%20transportation%20and%20global%20cargo-ship%20movements&rft.jtitle=The%20European%20physical%20journal.%20B,%20Condensed%20matter%20physics&rft.au=Woolley-Meza,%20O.&rft.date=2011-12-01&rft.volume=84&rft.issue=4&rft.spage=589&rft.epage=600&rft.pages=589-600&rft.issn=1434-6028&rft.eissn=1434-6036&rft_id=info:doi/10.1140/epjb/e2011-20208-9&rft_dat=%3Cgale_proqu%3EA355776848%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2404396894&rft_id=info:pmid/&rft_galeid=A355776848&rfr_iscdi=true