Complexity in human transportation networks: a comparative analysis of worldwide air transportation and global cargo-ship movements
We present a comparative network-theoretic analysis of the two largest global transportation networks: the worldwide air-transportation network (WAN) and the global cargo-ship network (GCSN). We show that both networks exhibit surprising statistical similarities despite significant differences in to...
Gespeichert in:
Veröffentlicht in: | The European physical journal. B, Condensed matter physics Condensed matter physics, 2011-12, Vol.84 (4), p.589-600 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 600 |
---|---|
container_issue | 4 |
container_start_page | 589 |
container_title | The European physical journal. B, Condensed matter physics |
container_volume | 84 |
creator | Woolley-Meza, O. Thiemann, C. Grady, D. Lee, J. J. Seebens, H. Blasius, B. Brockmann, D. |
description | We present a comparative network-theoretic analysis of the two largest global transportation networks: the worldwide air-transportation network (WAN) and the global cargo-ship network (GCSN). We show that both networks exhibit surprising statistical similarities despite significant differences in topology and connectivity. Both networks exhibit a discontinuity in node and link betweenness distributions which implies that these networks naturally segregate into two different classes of nodes and links. We introduce a technique based on effective distances, shortest paths and shortest path trees for strongly weighted symmetric networks and show that in a shortest path tree representation the most significant features of both networks can be readily seen. We show that effective shortest path distance, unlike conventional geographic distance measures, strongly correlates with node centrality measures. Using the new technique we show that network resilience can be investigated more precisely than with contemporary techniques that are based on percolation theory. We extract a functional relationship between node characteristics and resilience to network disruption. Finally we discuss the results, their implications and conclude that dynamic processes that evolve on both networks are expected to share universal dynamic characteristics. |
doi_str_mv | 10.1140/epjb/e2011-20208-9 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2404396894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A355776848</galeid><sourcerecordid>A355776848</sourcerecordid><originalsourceid>FETCH-LOGICAL-c532t-ab2deb2de39f39ef184e49ac395a5a989ef9d5669294c35a7059fbadc91d54883</originalsourceid><addsrcrecordid>eNp9kUtr3DAUhU1poWnaP9CVoHTRhRM9PVZ3YegjEAj0sRZ35GtHU1tyJU2SWfePV86ElGRRhNDl6LsHXZ2qesvoCWOSnuK83Zwip4zVnHLa1vpZdcSkkHVDRfP8oebty-pVSltKKWuYPKr-rMM0j3jr8p44T652E3iSI_g0h5ghu-CJx3wT4q_0kQCxBYdY9Gsk4GHcJ5dI6EkBxu7GdUV18akB-I4MY9jASCzEIdTpys1kCtc4oc_pdfWihzHhm_vzuPr5-dOP9df64vLL-frsorZK8FzDhne4bKF7obFnrUSpwQqtQIFui6Q71TSaa2mFghVVut9AZzXrlGxbcVy9O_jOMfzeYcpmG3axDJEMl1QK3bRaFurkQA0wonG-D2UaW1aHk7PBY--KfiaUWq2aVi62Hx41FCbjbR5gl5I5__7tMcsPrI0hpYi9maObIO4No2ZJ0ixJmrskzV2SRpem9_fvhmRh7MvnWpceOrkSUnO2mIsDl8qVHzD-m-8_7n8Bc0mysQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2404396894</pqid></control><display><type>article</type><title>Complexity in human transportation networks: a comparative analysis of worldwide air transportation and global cargo-ship movements</title><source>SpringerNature Journals</source><creator>Woolley-Meza, O. ; Thiemann, C. ; Grady, D. ; Lee, J. J. ; Seebens, H. ; Blasius, B. ; Brockmann, D.</creator><creatorcontrib>Woolley-Meza, O. ; Thiemann, C. ; Grady, D. ; Lee, J. J. ; Seebens, H. ; Blasius, B. ; Brockmann, D.</creatorcontrib><description>We present a comparative network-theoretic analysis of the two largest global transportation networks: the worldwide air-transportation network (WAN) and the global cargo-ship network (GCSN). We show that both networks exhibit surprising statistical similarities despite significant differences in topology and connectivity. Both networks exhibit a discontinuity in node and link betweenness distributions which implies that these networks naturally segregate into two different classes of nodes and links. We introduce a technique based on effective distances, shortest paths and shortest path trees for strongly weighted symmetric networks and show that in a shortest path tree representation the most significant features of both networks can be readily seen. We show that effective shortest path distance, unlike conventional geographic distance measures, strongly correlates with node centrality measures. Using the new technique we show that network resilience can be investigated more precisely than with contemporary techniques that are based on percolation theory. We extract a functional relationship between node characteristics and resilience to network disruption. Finally we discuss the results, their implications and conclude that dynamic processes that evolve on both networks are expected to share universal dynamic characteristics.</description><identifier>ISSN: 1434-6028</identifier><identifier>EISSN: 1434-6036</identifier><identifier>DOI: 10.1140/epjb/e2011-20208-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Aeronautics ; Air freight ; Air transportation ; Air transportation and traffic ; Analysis ; Applied sciences ; Cargo ships ; Complex Systems ; Condensed Matter Physics ; Correlation analysis ; Distance measurement ; Dynamic characteristics ; Exact sciences and technology ; Fluid- and Aerodynamics ; Ground, air and sea transportation, marine construction ; Marine and water way transportation and traffic ; Nodes ; Operational research and scientific management ; Operational research. Management science ; Percolation theory ; Physics ; Physics and Astronomy ; Regular Article ; Resilience ; Risk theory. Actuarial science ; Shortest-path problems ; Solid State Physics ; Topology ; Transportation networks ; Transportation planning, management and economics ; Wide area networks</subject><ispartof>The European physical journal. B, Condensed matter physics, 2011-12, Vol.84 (4), p.589-600</ispartof><rights>EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2011 Springer</rights><rights>EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c532t-ab2deb2de39f39ef184e49ac395a5a989ef9d5669294c35a7059fbadc91d54883</citedby><cites>FETCH-LOGICAL-c532t-ab2deb2de39f39ef184e49ac395a5a989ef9d5669294c35a7059fbadc91d54883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjb/e2011-20208-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epjb/e2011-20208-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25349218$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Woolley-Meza, O.</creatorcontrib><creatorcontrib>Thiemann, C.</creatorcontrib><creatorcontrib>Grady, D.</creatorcontrib><creatorcontrib>Lee, J. J.</creatorcontrib><creatorcontrib>Seebens, H.</creatorcontrib><creatorcontrib>Blasius, B.</creatorcontrib><creatorcontrib>Brockmann, D.</creatorcontrib><title>Complexity in human transportation networks: a comparative analysis of worldwide air transportation and global cargo-ship movements</title><title>The European physical journal. B, Condensed matter physics</title><addtitle>Eur. Phys. J. B</addtitle><description>We present a comparative network-theoretic analysis of the two largest global transportation networks: the worldwide air-transportation network (WAN) and the global cargo-ship network (GCSN). We show that both networks exhibit surprising statistical similarities despite significant differences in topology and connectivity. Both networks exhibit a discontinuity in node and link betweenness distributions which implies that these networks naturally segregate into two different classes of nodes and links. We introduce a technique based on effective distances, shortest paths and shortest path trees for strongly weighted symmetric networks and show that in a shortest path tree representation the most significant features of both networks can be readily seen. We show that effective shortest path distance, unlike conventional geographic distance measures, strongly correlates with node centrality measures. Using the new technique we show that network resilience can be investigated more precisely than with contemporary techniques that are based on percolation theory. We extract a functional relationship between node characteristics and resilience to network disruption. Finally we discuss the results, their implications and conclude that dynamic processes that evolve on both networks are expected to share universal dynamic characteristics.</description><subject>Aeronautics</subject><subject>Air freight</subject><subject>Air transportation</subject><subject>Air transportation and traffic</subject><subject>Analysis</subject><subject>Applied sciences</subject><subject>Cargo ships</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Correlation analysis</subject><subject>Distance measurement</subject><subject>Dynamic characteristics</subject><subject>Exact sciences and technology</subject><subject>Fluid- and Aerodynamics</subject><subject>Ground, air and sea transportation, marine construction</subject><subject>Marine and water way transportation and traffic</subject><subject>Nodes</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Percolation theory</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Regular Article</subject><subject>Resilience</subject><subject>Risk theory. Actuarial science</subject><subject>Shortest-path problems</subject><subject>Solid State Physics</subject><subject>Topology</subject><subject>Transportation networks</subject><subject>Transportation planning, management and economics</subject><subject>Wide area networks</subject><issn>1434-6028</issn><issn>1434-6036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kUtr3DAUhU1poWnaP9CVoHTRhRM9PVZ3YegjEAj0sRZ35GtHU1tyJU2SWfePV86ElGRRhNDl6LsHXZ2qesvoCWOSnuK83Zwip4zVnHLa1vpZdcSkkHVDRfP8oebty-pVSltKKWuYPKr-rMM0j3jr8p44T652E3iSI_g0h5ghu-CJx3wT4q_0kQCxBYdY9Gsk4GHcJ5dI6EkBxu7GdUV18akB-I4MY9jASCzEIdTpys1kCtc4oc_pdfWihzHhm_vzuPr5-dOP9df64vLL-frsorZK8FzDhne4bKF7obFnrUSpwQqtQIFui6Q71TSaa2mFghVVut9AZzXrlGxbcVy9O_jOMfzeYcpmG3axDJEMl1QK3bRaFurkQA0wonG-D2UaW1aHk7PBY--KfiaUWq2aVi62Hx41FCbjbR5gl5I5__7tMcsPrI0hpYi9maObIO4No2ZJ0ixJmrskzV2SRpem9_fvhmRh7MvnWpceOrkSUnO2mIsDl8qVHzD-m-8_7n8Bc0mysQ</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Woolley-Meza, O.</creator><creator>Thiemann, C.</creator><creator>Grady, D.</creator><creator>Lee, J. J.</creator><creator>Seebens, H.</creator><creator>Blasius, B.</creator><creator>Brockmann, D.</creator><general>Springer-Verlag</general><general>EDP Sciences</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20111201</creationdate><title>Complexity in human transportation networks: a comparative analysis of worldwide air transportation and global cargo-ship movements</title><author>Woolley-Meza, O. ; Thiemann, C. ; Grady, D. ; Lee, J. J. ; Seebens, H. ; Blasius, B. ; Brockmann, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c532t-ab2deb2de39f39ef184e49ac395a5a989ef9d5669294c35a7059fbadc91d54883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Aeronautics</topic><topic>Air freight</topic><topic>Air transportation</topic><topic>Air transportation and traffic</topic><topic>Analysis</topic><topic>Applied sciences</topic><topic>Cargo ships</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Correlation analysis</topic><topic>Distance measurement</topic><topic>Dynamic characteristics</topic><topic>Exact sciences and technology</topic><topic>Fluid- and Aerodynamics</topic><topic>Ground, air and sea transportation, marine construction</topic><topic>Marine and water way transportation and traffic</topic><topic>Nodes</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Percolation theory</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Regular Article</topic><topic>Resilience</topic><topic>Risk theory. Actuarial science</topic><topic>Shortest-path problems</topic><topic>Solid State Physics</topic><topic>Topology</topic><topic>Transportation networks</topic><topic>Transportation planning, management and economics</topic><topic>Wide area networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Woolley-Meza, O.</creatorcontrib><creatorcontrib>Thiemann, C.</creatorcontrib><creatorcontrib>Grady, D.</creatorcontrib><creatorcontrib>Lee, J. J.</creatorcontrib><creatorcontrib>Seebens, H.</creatorcontrib><creatorcontrib>Blasius, B.</creatorcontrib><creatorcontrib>Brockmann, D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>The European physical journal. B, Condensed matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Woolley-Meza, O.</au><au>Thiemann, C.</au><au>Grady, D.</au><au>Lee, J. J.</au><au>Seebens, H.</au><au>Blasius, B.</au><au>Brockmann, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complexity in human transportation networks: a comparative analysis of worldwide air transportation and global cargo-ship movements</atitle><jtitle>The European physical journal. B, Condensed matter physics</jtitle><stitle>Eur. Phys. J. B</stitle><date>2011-12-01</date><risdate>2011</risdate><volume>84</volume><issue>4</issue><spage>589</spage><epage>600</epage><pages>589-600</pages><issn>1434-6028</issn><eissn>1434-6036</eissn><abstract>We present a comparative network-theoretic analysis of the two largest global transportation networks: the worldwide air-transportation network (WAN) and the global cargo-ship network (GCSN). We show that both networks exhibit surprising statistical similarities despite significant differences in topology and connectivity. Both networks exhibit a discontinuity in node and link betweenness distributions which implies that these networks naturally segregate into two different classes of nodes and links. We introduce a technique based on effective distances, shortest paths and shortest path trees for strongly weighted symmetric networks and show that in a shortest path tree representation the most significant features of both networks can be readily seen. We show that effective shortest path distance, unlike conventional geographic distance measures, strongly correlates with node centrality measures. Using the new technique we show that network resilience can be investigated more precisely than with contemporary techniques that are based on percolation theory. We extract a functional relationship between node characteristics and resilience to network disruption. Finally we discuss the results, their implications and conclude that dynamic processes that evolve on both networks are expected to share universal dynamic characteristics.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1140/epjb/e2011-20208-9</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1434-6028 |
ispartof | The European physical journal. B, Condensed matter physics, 2011-12, Vol.84 (4), p.589-600 |
issn | 1434-6028 1434-6036 |
language | eng |
recordid | cdi_proquest_journals_2404396894 |
source | SpringerNature Journals |
subjects | Aeronautics Air freight Air transportation Air transportation and traffic Analysis Applied sciences Cargo ships Complex Systems Condensed Matter Physics Correlation analysis Distance measurement Dynamic characteristics Exact sciences and technology Fluid- and Aerodynamics Ground, air and sea transportation, marine construction Marine and water way transportation and traffic Nodes Operational research and scientific management Operational research. Management science Percolation theory Physics Physics and Astronomy Regular Article Resilience Risk theory. Actuarial science Shortest-path problems Solid State Physics Topology Transportation networks Transportation planning, management and economics Wide area networks |
title | Complexity in human transportation networks: a comparative analysis of worldwide air transportation and global cargo-ship movements |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A02%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complexity%20in%20human%20transportation%20networks:%20a%20comparative%20analysis%20of%20worldwide%20air%20transportation%20and%20global%20cargo-ship%20movements&rft.jtitle=The%20European%20physical%20journal.%20B,%20Condensed%20matter%20physics&rft.au=Woolley-Meza,%20O.&rft.date=2011-12-01&rft.volume=84&rft.issue=4&rft.spage=589&rft.epage=600&rft.pages=589-600&rft.issn=1434-6028&rft.eissn=1434-6036&rft_id=info:doi/10.1140/epjb/e2011-20208-9&rft_dat=%3Cgale_proqu%3EA355776848%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2404396894&rft_id=info:pmid/&rft_galeid=A355776848&rfr_iscdi=true |