A universal cross-linking binding polymer composite for ultrahigh-loading Li-ion battery electrodes

To obtain high energy density, it is crucial to fabricate high-loading electrodes, which is severely hindered by their mechanical degeneration. Furthermore, a general strategy with low cost, eco-friendliness, and facile operability is urgently required for wide application. Herein, a novel 3D networ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2020-05, Vol.8 (19), p.9693-97
Hauptverfasser: Wang, Dong, Zhang, Qian, Liu, Jie, Zhao, Erying, Li, Zhenwei, Yang, Yu, Guo, Ziyang, Wang, Lei, Zhang, Shanqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 97
container_issue 19
container_start_page 9693
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 8
creator Wang, Dong
Zhang, Qian
Liu, Jie
Zhao, Erying
Li, Zhenwei
Yang, Yu
Guo, Ziyang
Wang, Lei
Zhang, Shanqing
description To obtain high energy density, it is crucial to fabricate high-loading electrodes, which is severely hindered by their mechanical degeneration. Furthermore, a general strategy with low cost, eco-friendliness, and facile operability is urgently required for wide application. Herein, a novel 3D network binder with an efficient damper is proposed via thermal condensation of polyacrylic acid and xanthan gum (c-PAA-XG), in which the covalent crosslinking provides robust mechanical strength to withstand the mechanical degeneration. Meanwhile, due to abundant dynamic intermolecular hydrogen bonds and molecular chain weaving, the double-helix-structure XG can partly deform and self-assemble and act as a high-efficiency damper to protect the network binder from fracture when large impulse occurs under high loading. Consequently, a wide range of ultrahigh-loading electrodes can be successfully achieved through simply applying this c-PAA-XG binder with traditional doctor blade coating technology on planar current collector. In particular, for the nano/micro-Si/C anode with a high loading of 18.3 mg cm −2 , an ultrahigh reversible areal capacity of 27.7 mA h cm −2 can be delivered. Reaction kinetics investigations suggest that the charge-discharge process of the Si/C electrode is dominated by a capacitive-controlled behavior, resulting in fast storage/release of Li + in high-loading electrodes. Furthermore, the c-PAA-XG binder has the advantages of low cost, eco-friendliness, and water-solubility, resulting in a sustainable electrode fabrication. A general, facile-operability, and sustainable strategy to achieve ultrahigh-loading electrodes has been proposed that is simply replacing the traditional PVDF binder with an eco-friendly and robust c-PAA-XG binder with a high-efficiency damper.
doi_str_mv 10.1039/d0ta00714e
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2404389176</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2404389176</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-fc0b4c40195736691711dbd83e8c6a60e9165b3e59ae8dcfbbdc546dda4603ee3</originalsourceid><addsrcrecordid>eNp9kM1LAzEQxYMoWGov3oWIN2F10mTTzbHU-gEFL_W8ZJPZNnW7WZNdof-921bqzbm8gffjDfMIuWbwwICrRwutBpgwgWdkMIYUkolQ8vy0Z9klGcW4gX4yAKnUgJgp7Wr3jSHqiprgY0wqV3-6ekULV9u9Nr7abTFQ47eNj65FWvpAu6oNeu1W66Ty-sAtXOJ8TQvdthh2FCs0bfAW4xW5KHUVcfSrQ_LxPF_OXpPF-8vbbLpIDBeiTUoDhTACmEonXErFJozZwmYcMyO1BFRMpgXHVGnMrCmLwppUSGu1kMAR-ZDcHXOb4L86jG2-8V2o-5P5WIDgWR8pe-r-SB2-DVjmTXBbHXY5g3zfY_4Ey-mhx3kP3xzhEM2J--u592__8_PGlvwHwTJ8Iw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2404389176</pqid></control><display><type>article</type><title>A universal cross-linking binding polymer composite for ultrahigh-loading Li-ion battery electrodes</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Wang, Dong ; Zhang, Qian ; Liu, Jie ; Zhao, Erying ; Li, Zhenwei ; Yang, Yu ; Guo, Ziyang ; Wang, Lei ; Zhang, Shanqing</creator><creatorcontrib>Wang, Dong ; Zhang, Qian ; Liu, Jie ; Zhao, Erying ; Li, Zhenwei ; Yang, Yu ; Guo, Ziyang ; Wang, Lei ; Zhang, Shanqing</creatorcontrib><description>To obtain high energy density, it is crucial to fabricate high-loading electrodes, which is severely hindered by their mechanical degeneration. Furthermore, a general strategy with low cost, eco-friendliness, and facile operability is urgently required for wide application. Herein, a novel 3D network binder with an efficient damper is proposed via thermal condensation of polyacrylic acid and xanthan gum (c-PAA-XG), in which the covalent crosslinking provides robust mechanical strength to withstand the mechanical degeneration. Meanwhile, due to abundant dynamic intermolecular hydrogen bonds and molecular chain weaving, the double-helix-structure XG can partly deform and self-assemble and act as a high-efficiency damper to protect the network binder from fracture when large impulse occurs under high loading. Consequently, a wide range of ultrahigh-loading electrodes can be successfully achieved through simply applying this c-PAA-XG binder with traditional doctor blade coating technology on planar current collector. In particular, for the nano/micro-Si/C anode with a high loading of 18.3 mg cm −2 , an ultrahigh reversible areal capacity of 27.7 mA h cm −2 can be delivered. Reaction kinetics investigations suggest that the charge-discharge process of the Si/C electrode is dominated by a capacitive-controlled behavior, resulting in fast storage/release of Li + in high-loading electrodes. Furthermore, the c-PAA-XG binder has the advantages of low cost, eco-friendliness, and water-solubility, resulting in a sustainable electrode fabrication. A general, facile-operability, and sustainable strategy to achieve ultrahigh-loading electrodes has been proposed that is simply replacing the traditional PVDF binder with an eco-friendly and robust c-PAA-XG binder with a high-efficiency damper.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d0ta00714e</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Blade coating ; Chemical bonds ; Composite materials ; Crosslinking ; Degeneration ; Electrodes ; Fabrication ; Flux density ; Hydrogen bonding ; Hydrogen bonds ; Lithium-ion batteries ; Low cost ; Mechanical properties ; Molecular chains ; Molecular structure ; Polyacrylic acid ; Polymer matrix composites ; Polymers ; Reaction kinetics ; Rechargeable batteries ; Xanthan ; Xanthan gum</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2020-05, Vol.8 (19), p.9693-97</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-fc0b4c40195736691711dbd83e8c6a60e9165b3e59ae8dcfbbdc546dda4603ee3</citedby><cites>FETCH-LOGICAL-c344t-fc0b4c40195736691711dbd83e8c6a60e9165b3e59ae8dcfbbdc546dda4603ee3</cites><orcidid>0000-0001-7275-4846 ; 0000-0002-5402-1881 ; 0000-0001-5192-1844 ; 0000-0002-2577-2512</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Dong</creatorcontrib><creatorcontrib>Zhang, Qian</creatorcontrib><creatorcontrib>Liu, Jie</creatorcontrib><creatorcontrib>Zhao, Erying</creatorcontrib><creatorcontrib>Li, Zhenwei</creatorcontrib><creatorcontrib>Yang, Yu</creatorcontrib><creatorcontrib>Guo, Ziyang</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Zhang, Shanqing</creatorcontrib><title>A universal cross-linking binding polymer composite for ultrahigh-loading Li-ion battery electrodes</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>To obtain high energy density, it is crucial to fabricate high-loading electrodes, which is severely hindered by their mechanical degeneration. Furthermore, a general strategy with low cost, eco-friendliness, and facile operability is urgently required for wide application. Herein, a novel 3D network binder with an efficient damper is proposed via thermal condensation of polyacrylic acid and xanthan gum (c-PAA-XG), in which the covalent crosslinking provides robust mechanical strength to withstand the mechanical degeneration. Meanwhile, due to abundant dynamic intermolecular hydrogen bonds and molecular chain weaving, the double-helix-structure XG can partly deform and self-assemble and act as a high-efficiency damper to protect the network binder from fracture when large impulse occurs under high loading. Consequently, a wide range of ultrahigh-loading electrodes can be successfully achieved through simply applying this c-PAA-XG binder with traditional doctor blade coating technology on planar current collector. In particular, for the nano/micro-Si/C anode with a high loading of 18.3 mg cm −2 , an ultrahigh reversible areal capacity of 27.7 mA h cm −2 can be delivered. Reaction kinetics investigations suggest that the charge-discharge process of the Si/C electrode is dominated by a capacitive-controlled behavior, resulting in fast storage/release of Li + in high-loading electrodes. Furthermore, the c-PAA-XG binder has the advantages of low cost, eco-friendliness, and water-solubility, resulting in a sustainable electrode fabrication. A general, facile-operability, and sustainable strategy to achieve ultrahigh-loading electrodes has been proposed that is simply replacing the traditional PVDF binder with an eco-friendly and robust c-PAA-XG binder with a high-efficiency damper.</description><subject>Blade coating</subject><subject>Chemical bonds</subject><subject>Composite materials</subject><subject>Crosslinking</subject><subject>Degeneration</subject><subject>Electrodes</subject><subject>Fabrication</subject><subject>Flux density</subject><subject>Hydrogen bonding</subject><subject>Hydrogen bonds</subject><subject>Lithium-ion batteries</subject><subject>Low cost</subject><subject>Mechanical properties</subject><subject>Molecular chains</subject><subject>Molecular structure</subject><subject>Polyacrylic acid</subject><subject>Polymer matrix composites</subject><subject>Polymers</subject><subject>Reaction kinetics</subject><subject>Rechargeable batteries</subject><subject>Xanthan</subject><subject>Xanthan gum</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LAzEQxYMoWGov3oWIN2F10mTTzbHU-gEFL_W8ZJPZNnW7WZNdof-921bqzbm8gffjDfMIuWbwwICrRwutBpgwgWdkMIYUkolQ8vy0Z9klGcW4gX4yAKnUgJgp7Wr3jSHqiprgY0wqV3-6ekULV9u9Nr7abTFQ47eNj65FWvpAu6oNeu1W66Ty-sAtXOJ8TQvdthh2FCs0bfAW4xW5KHUVcfSrQ_LxPF_OXpPF-8vbbLpIDBeiTUoDhTACmEonXErFJozZwmYcMyO1BFRMpgXHVGnMrCmLwppUSGu1kMAR-ZDcHXOb4L86jG2-8V2o-5P5WIDgWR8pe-r-SB2-DVjmTXBbHXY5g3zfY_4Ey-mhx3kP3xzhEM2J--u592__8_PGlvwHwTJ8Iw</recordid><startdate>20200521</startdate><enddate>20200521</enddate><creator>Wang, Dong</creator><creator>Zhang, Qian</creator><creator>Liu, Jie</creator><creator>Zhao, Erying</creator><creator>Li, Zhenwei</creator><creator>Yang, Yu</creator><creator>Guo, Ziyang</creator><creator>Wang, Lei</creator><creator>Zhang, Shanqing</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-7275-4846</orcidid><orcidid>https://orcid.org/0000-0002-5402-1881</orcidid><orcidid>https://orcid.org/0000-0001-5192-1844</orcidid><orcidid>https://orcid.org/0000-0002-2577-2512</orcidid></search><sort><creationdate>20200521</creationdate><title>A universal cross-linking binding polymer composite for ultrahigh-loading Li-ion battery electrodes</title><author>Wang, Dong ; Zhang, Qian ; Liu, Jie ; Zhao, Erying ; Li, Zhenwei ; Yang, Yu ; Guo, Ziyang ; Wang, Lei ; Zhang, Shanqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-fc0b4c40195736691711dbd83e8c6a60e9165b3e59ae8dcfbbdc546dda4603ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Blade coating</topic><topic>Chemical bonds</topic><topic>Composite materials</topic><topic>Crosslinking</topic><topic>Degeneration</topic><topic>Electrodes</topic><topic>Fabrication</topic><topic>Flux density</topic><topic>Hydrogen bonding</topic><topic>Hydrogen bonds</topic><topic>Lithium-ion batteries</topic><topic>Low cost</topic><topic>Mechanical properties</topic><topic>Molecular chains</topic><topic>Molecular structure</topic><topic>Polyacrylic acid</topic><topic>Polymer matrix composites</topic><topic>Polymers</topic><topic>Reaction kinetics</topic><topic>Rechargeable batteries</topic><topic>Xanthan</topic><topic>Xanthan gum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Dong</creatorcontrib><creatorcontrib>Zhang, Qian</creatorcontrib><creatorcontrib>Liu, Jie</creatorcontrib><creatorcontrib>Zhao, Erying</creatorcontrib><creatorcontrib>Li, Zhenwei</creatorcontrib><creatorcontrib>Yang, Yu</creatorcontrib><creatorcontrib>Guo, Ziyang</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Zhang, Shanqing</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Dong</au><au>Zhang, Qian</au><au>Liu, Jie</au><au>Zhao, Erying</au><au>Li, Zhenwei</au><au>Yang, Yu</au><au>Guo, Ziyang</au><au>Wang, Lei</au><au>Zhang, Shanqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A universal cross-linking binding polymer composite for ultrahigh-loading Li-ion battery electrodes</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2020-05-21</date><risdate>2020</risdate><volume>8</volume><issue>19</issue><spage>9693</spage><epage>97</epage><pages>9693-97</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>To obtain high energy density, it is crucial to fabricate high-loading electrodes, which is severely hindered by their mechanical degeneration. Furthermore, a general strategy with low cost, eco-friendliness, and facile operability is urgently required for wide application. Herein, a novel 3D network binder with an efficient damper is proposed via thermal condensation of polyacrylic acid and xanthan gum (c-PAA-XG), in which the covalent crosslinking provides robust mechanical strength to withstand the mechanical degeneration. Meanwhile, due to abundant dynamic intermolecular hydrogen bonds and molecular chain weaving, the double-helix-structure XG can partly deform and self-assemble and act as a high-efficiency damper to protect the network binder from fracture when large impulse occurs under high loading. Consequently, a wide range of ultrahigh-loading electrodes can be successfully achieved through simply applying this c-PAA-XG binder with traditional doctor blade coating technology on planar current collector. In particular, for the nano/micro-Si/C anode with a high loading of 18.3 mg cm −2 , an ultrahigh reversible areal capacity of 27.7 mA h cm −2 can be delivered. Reaction kinetics investigations suggest that the charge-discharge process of the Si/C electrode is dominated by a capacitive-controlled behavior, resulting in fast storage/release of Li + in high-loading electrodes. Furthermore, the c-PAA-XG binder has the advantages of low cost, eco-friendliness, and water-solubility, resulting in a sustainable electrode fabrication. A general, facile-operability, and sustainable strategy to achieve ultrahigh-loading electrodes has been proposed that is simply replacing the traditional PVDF binder with an eco-friendly and robust c-PAA-XG binder with a high-efficiency damper.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0ta00714e</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7275-4846</orcidid><orcidid>https://orcid.org/0000-0002-5402-1881</orcidid><orcidid>https://orcid.org/0000-0001-5192-1844</orcidid><orcidid>https://orcid.org/0000-0002-2577-2512</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2020-05, Vol.8 (19), p.9693-97
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_2404389176
source Royal Society Of Chemistry Journals 2008-
subjects Blade coating
Chemical bonds
Composite materials
Crosslinking
Degeneration
Electrodes
Fabrication
Flux density
Hydrogen bonding
Hydrogen bonds
Lithium-ion batteries
Low cost
Mechanical properties
Molecular chains
Molecular structure
Polyacrylic acid
Polymer matrix composites
Polymers
Reaction kinetics
Rechargeable batteries
Xanthan
Xanthan gum
title A universal cross-linking binding polymer composite for ultrahigh-loading Li-ion battery electrodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A37%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20universal%20cross-linking%20binding%20polymer%20composite%20for%20ultrahigh-loading%20Li-ion%20battery%20electrodes&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Wang,%20Dong&rft.date=2020-05-21&rft.volume=8&rft.issue=19&rft.spage=9693&rft.epage=97&rft.pages=9693-97&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d0ta00714e&rft_dat=%3Cproquest_cross%3E2404389176%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2404389176&rft_id=info:pmid/&rfr_iscdi=true