A universal cross-linking binding polymer composite for ultrahigh-loading Li-ion battery electrodes
To obtain high energy density, it is crucial to fabricate high-loading electrodes, which is severely hindered by their mechanical degeneration. Furthermore, a general strategy with low cost, eco-friendliness, and facile operability is urgently required for wide application. Herein, a novel 3D networ...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2020-05, Vol.8 (19), p.9693-97 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 97 |
---|---|
container_issue | 19 |
container_start_page | 9693 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 8 |
creator | Wang, Dong Zhang, Qian Liu, Jie Zhao, Erying Li, Zhenwei Yang, Yu Guo, Ziyang Wang, Lei Zhang, Shanqing |
description | To obtain high energy density, it is crucial to fabricate high-loading electrodes, which is severely hindered by their mechanical degeneration. Furthermore, a general strategy with low cost, eco-friendliness, and facile operability is urgently required for wide application. Herein, a novel 3D network binder with an efficient damper is proposed
via
thermal condensation of polyacrylic acid and xanthan gum (c-PAA-XG), in which the covalent crosslinking provides robust mechanical strength to withstand the mechanical degeneration. Meanwhile, due to abundant dynamic intermolecular hydrogen bonds and molecular chain weaving, the double-helix-structure XG can partly deform and self-assemble and act as a high-efficiency damper to protect the network binder from fracture when large impulse occurs under high loading. Consequently, a wide range of ultrahigh-loading electrodes can be successfully achieved through simply applying this c-PAA-XG binder with traditional doctor blade coating technology on planar current collector. In particular, for the nano/micro-Si/C anode with a high loading of 18.3 mg cm
−2
, an ultrahigh reversible areal capacity of 27.7 mA h cm
−2
can be delivered. Reaction kinetics investigations suggest that the charge-discharge process of the Si/C electrode is dominated by a capacitive-controlled behavior, resulting in fast storage/release of Li
+
in high-loading electrodes. Furthermore, the c-PAA-XG binder has the advantages of low cost, eco-friendliness, and water-solubility, resulting in a sustainable electrode fabrication.
A general, facile-operability, and sustainable strategy to achieve ultrahigh-loading electrodes has been proposed that is simply replacing the traditional PVDF binder with an eco-friendly and robust c-PAA-XG binder with a high-efficiency damper. |
doi_str_mv | 10.1039/d0ta00714e |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2404389176</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2404389176</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-fc0b4c40195736691711dbd83e8c6a60e9165b3e59ae8dcfbbdc546dda4603ee3</originalsourceid><addsrcrecordid>eNp9kM1LAzEQxYMoWGov3oWIN2F10mTTzbHU-gEFL_W8ZJPZNnW7WZNdof-921bqzbm8gffjDfMIuWbwwICrRwutBpgwgWdkMIYUkolQ8vy0Z9klGcW4gX4yAKnUgJgp7Wr3jSHqiprgY0wqV3-6ekULV9u9Nr7abTFQ47eNj65FWvpAu6oNeu1W66Ty-sAtXOJ8TQvdthh2FCs0bfAW4xW5KHUVcfSrQ_LxPF_OXpPF-8vbbLpIDBeiTUoDhTACmEonXErFJozZwmYcMyO1BFRMpgXHVGnMrCmLwppUSGu1kMAR-ZDcHXOb4L86jG2-8V2o-5P5WIDgWR8pe-r-SB2-DVjmTXBbHXY5g3zfY_4Ey-mhx3kP3xzhEM2J--u592__8_PGlvwHwTJ8Iw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2404389176</pqid></control><display><type>article</type><title>A universal cross-linking binding polymer composite for ultrahigh-loading Li-ion battery electrodes</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Wang, Dong ; Zhang, Qian ; Liu, Jie ; Zhao, Erying ; Li, Zhenwei ; Yang, Yu ; Guo, Ziyang ; Wang, Lei ; Zhang, Shanqing</creator><creatorcontrib>Wang, Dong ; Zhang, Qian ; Liu, Jie ; Zhao, Erying ; Li, Zhenwei ; Yang, Yu ; Guo, Ziyang ; Wang, Lei ; Zhang, Shanqing</creatorcontrib><description>To obtain high energy density, it is crucial to fabricate high-loading electrodes, which is severely hindered by their mechanical degeneration. Furthermore, a general strategy with low cost, eco-friendliness, and facile operability is urgently required for wide application. Herein, a novel 3D network binder with an efficient damper is proposed
via
thermal condensation of polyacrylic acid and xanthan gum (c-PAA-XG), in which the covalent crosslinking provides robust mechanical strength to withstand the mechanical degeneration. Meanwhile, due to abundant dynamic intermolecular hydrogen bonds and molecular chain weaving, the double-helix-structure XG can partly deform and self-assemble and act as a high-efficiency damper to protect the network binder from fracture when large impulse occurs under high loading. Consequently, a wide range of ultrahigh-loading electrodes can be successfully achieved through simply applying this c-PAA-XG binder with traditional doctor blade coating technology on planar current collector. In particular, for the nano/micro-Si/C anode with a high loading of 18.3 mg cm
−2
, an ultrahigh reversible areal capacity of 27.7 mA h cm
−2
can be delivered. Reaction kinetics investigations suggest that the charge-discharge process of the Si/C electrode is dominated by a capacitive-controlled behavior, resulting in fast storage/release of Li
+
in high-loading electrodes. Furthermore, the c-PAA-XG binder has the advantages of low cost, eco-friendliness, and water-solubility, resulting in a sustainable electrode fabrication.
A general, facile-operability, and sustainable strategy to achieve ultrahigh-loading electrodes has been proposed that is simply replacing the traditional PVDF binder with an eco-friendly and robust c-PAA-XG binder with a high-efficiency damper.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d0ta00714e</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Blade coating ; Chemical bonds ; Composite materials ; Crosslinking ; Degeneration ; Electrodes ; Fabrication ; Flux density ; Hydrogen bonding ; Hydrogen bonds ; Lithium-ion batteries ; Low cost ; Mechanical properties ; Molecular chains ; Molecular structure ; Polyacrylic acid ; Polymer matrix composites ; Polymers ; Reaction kinetics ; Rechargeable batteries ; Xanthan ; Xanthan gum</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2020-05, Vol.8 (19), p.9693-97</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-fc0b4c40195736691711dbd83e8c6a60e9165b3e59ae8dcfbbdc546dda4603ee3</citedby><cites>FETCH-LOGICAL-c344t-fc0b4c40195736691711dbd83e8c6a60e9165b3e59ae8dcfbbdc546dda4603ee3</cites><orcidid>0000-0001-7275-4846 ; 0000-0002-5402-1881 ; 0000-0001-5192-1844 ; 0000-0002-2577-2512</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Dong</creatorcontrib><creatorcontrib>Zhang, Qian</creatorcontrib><creatorcontrib>Liu, Jie</creatorcontrib><creatorcontrib>Zhao, Erying</creatorcontrib><creatorcontrib>Li, Zhenwei</creatorcontrib><creatorcontrib>Yang, Yu</creatorcontrib><creatorcontrib>Guo, Ziyang</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Zhang, Shanqing</creatorcontrib><title>A universal cross-linking binding polymer composite for ultrahigh-loading Li-ion battery electrodes</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>To obtain high energy density, it is crucial to fabricate high-loading electrodes, which is severely hindered by their mechanical degeneration. Furthermore, a general strategy with low cost, eco-friendliness, and facile operability is urgently required for wide application. Herein, a novel 3D network binder with an efficient damper is proposed
via
thermal condensation of polyacrylic acid and xanthan gum (c-PAA-XG), in which the covalent crosslinking provides robust mechanical strength to withstand the mechanical degeneration. Meanwhile, due to abundant dynamic intermolecular hydrogen bonds and molecular chain weaving, the double-helix-structure XG can partly deform and self-assemble and act as a high-efficiency damper to protect the network binder from fracture when large impulse occurs under high loading. Consequently, a wide range of ultrahigh-loading electrodes can be successfully achieved through simply applying this c-PAA-XG binder with traditional doctor blade coating technology on planar current collector. In particular, for the nano/micro-Si/C anode with a high loading of 18.3 mg cm
−2
, an ultrahigh reversible areal capacity of 27.7 mA h cm
−2
can be delivered. Reaction kinetics investigations suggest that the charge-discharge process of the Si/C electrode is dominated by a capacitive-controlled behavior, resulting in fast storage/release of Li
+
in high-loading electrodes. Furthermore, the c-PAA-XG binder has the advantages of low cost, eco-friendliness, and water-solubility, resulting in a sustainable electrode fabrication.
A general, facile-operability, and sustainable strategy to achieve ultrahigh-loading electrodes has been proposed that is simply replacing the traditional PVDF binder with an eco-friendly and robust c-PAA-XG binder with a high-efficiency damper.</description><subject>Blade coating</subject><subject>Chemical bonds</subject><subject>Composite materials</subject><subject>Crosslinking</subject><subject>Degeneration</subject><subject>Electrodes</subject><subject>Fabrication</subject><subject>Flux density</subject><subject>Hydrogen bonding</subject><subject>Hydrogen bonds</subject><subject>Lithium-ion batteries</subject><subject>Low cost</subject><subject>Mechanical properties</subject><subject>Molecular chains</subject><subject>Molecular structure</subject><subject>Polyacrylic acid</subject><subject>Polymer matrix composites</subject><subject>Polymers</subject><subject>Reaction kinetics</subject><subject>Rechargeable batteries</subject><subject>Xanthan</subject><subject>Xanthan gum</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LAzEQxYMoWGov3oWIN2F10mTTzbHU-gEFL_W8ZJPZNnW7WZNdof-921bqzbm8gffjDfMIuWbwwICrRwutBpgwgWdkMIYUkolQ8vy0Z9klGcW4gX4yAKnUgJgp7Wr3jSHqiprgY0wqV3-6ekULV9u9Nr7abTFQ47eNj65FWvpAu6oNeu1W66Ty-sAtXOJ8TQvdthh2FCs0bfAW4xW5KHUVcfSrQ_LxPF_OXpPF-8vbbLpIDBeiTUoDhTACmEonXErFJozZwmYcMyO1BFRMpgXHVGnMrCmLwppUSGu1kMAR-ZDcHXOb4L86jG2-8V2o-5P5WIDgWR8pe-r-SB2-DVjmTXBbHXY5g3zfY_4Ey-mhx3kP3xzhEM2J--u592__8_PGlvwHwTJ8Iw</recordid><startdate>20200521</startdate><enddate>20200521</enddate><creator>Wang, Dong</creator><creator>Zhang, Qian</creator><creator>Liu, Jie</creator><creator>Zhao, Erying</creator><creator>Li, Zhenwei</creator><creator>Yang, Yu</creator><creator>Guo, Ziyang</creator><creator>Wang, Lei</creator><creator>Zhang, Shanqing</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-7275-4846</orcidid><orcidid>https://orcid.org/0000-0002-5402-1881</orcidid><orcidid>https://orcid.org/0000-0001-5192-1844</orcidid><orcidid>https://orcid.org/0000-0002-2577-2512</orcidid></search><sort><creationdate>20200521</creationdate><title>A universal cross-linking binding polymer composite for ultrahigh-loading Li-ion battery electrodes</title><author>Wang, Dong ; Zhang, Qian ; Liu, Jie ; Zhao, Erying ; Li, Zhenwei ; Yang, Yu ; Guo, Ziyang ; Wang, Lei ; Zhang, Shanqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-fc0b4c40195736691711dbd83e8c6a60e9165b3e59ae8dcfbbdc546dda4603ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Blade coating</topic><topic>Chemical bonds</topic><topic>Composite materials</topic><topic>Crosslinking</topic><topic>Degeneration</topic><topic>Electrodes</topic><topic>Fabrication</topic><topic>Flux density</topic><topic>Hydrogen bonding</topic><topic>Hydrogen bonds</topic><topic>Lithium-ion batteries</topic><topic>Low cost</topic><topic>Mechanical properties</topic><topic>Molecular chains</topic><topic>Molecular structure</topic><topic>Polyacrylic acid</topic><topic>Polymer matrix composites</topic><topic>Polymers</topic><topic>Reaction kinetics</topic><topic>Rechargeable batteries</topic><topic>Xanthan</topic><topic>Xanthan gum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Dong</creatorcontrib><creatorcontrib>Zhang, Qian</creatorcontrib><creatorcontrib>Liu, Jie</creatorcontrib><creatorcontrib>Zhao, Erying</creatorcontrib><creatorcontrib>Li, Zhenwei</creatorcontrib><creatorcontrib>Yang, Yu</creatorcontrib><creatorcontrib>Guo, Ziyang</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Zhang, Shanqing</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Dong</au><au>Zhang, Qian</au><au>Liu, Jie</au><au>Zhao, Erying</au><au>Li, Zhenwei</au><au>Yang, Yu</au><au>Guo, Ziyang</au><au>Wang, Lei</au><au>Zhang, Shanqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A universal cross-linking binding polymer composite for ultrahigh-loading Li-ion battery electrodes</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2020-05-21</date><risdate>2020</risdate><volume>8</volume><issue>19</issue><spage>9693</spage><epage>97</epage><pages>9693-97</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>To obtain high energy density, it is crucial to fabricate high-loading electrodes, which is severely hindered by their mechanical degeneration. Furthermore, a general strategy with low cost, eco-friendliness, and facile operability is urgently required for wide application. Herein, a novel 3D network binder with an efficient damper is proposed
via
thermal condensation of polyacrylic acid and xanthan gum (c-PAA-XG), in which the covalent crosslinking provides robust mechanical strength to withstand the mechanical degeneration. Meanwhile, due to abundant dynamic intermolecular hydrogen bonds and molecular chain weaving, the double-helix-structure XG can partly deform and self-assemble and act as a high-efficiency damper to protect the network binder from fracture when large impulse occurs under high loading. Consequently, a wide range of ultrahigh-loading electrodes can be successfully achieved through simply applying this c-PAA-XG binder with traditional doctor blade coating technology on planar current collector. In particular, for the nano/micro-Si/C anode with a high loading of 18.3 mg cm
−2
, an ultrahigh reversible areal capacity of 27.7 mA h cm
−2
can be delivered. Reaction kinetics investigations suggest that the charge-discharge process of the Si/C electrode is dominated by a capacitive-controlled behavior, resulting in fast storage/release of Li
+
in high-loading electrodes. Furthermore, the c-PAA-XG binder has the advantages of low cost, eco-friendliness, and water-solubility, resulting in a sustainable electrode fabrication.
A general, facile-operability, and sustainable strategy to achieve ultrahigh-loading electrodes has been proposed that is simply replacing the traditional PVDF binder with an eco-friendly and robust c-PAA-XG binder with a high-efficiency damper.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0ta00714e</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7275-4846</orcidid><orcidid>https://orcid.org/0000-0002-5402-1881</orcidid><orcidid>https://orcid.org/0000-0001-5192-1844</orcidid><orcidid>https://orcid.org/0000-0002-2577-2512</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2020-05, Vol.8 (19), p.9693-97 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_journals_2404389176 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Blade coating Chemical bonds Composite materials Crosslinking Degeneration Electrodes Fabrication Flux density Hydrogen bonding Hydrogen bonds Lithium-ion batteries Low cost Mechanical properties Molecular chains Molecular structure Polyacrylic acid Polymer matrix composites Polymers Reaction kinetics Rechargeable batteries Xanthan Xanthan gum |
title | A universal cross-linking binding polymer composite for ultrahigh-loading Li-ion battery electrodes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A37%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20universal%20cross-linking%20binding%20polymer%20composite%20for%20ultrahigh-loading%20Li-ion%20battery%20electrodes&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Wang,%20Dong&rft.date=2020-05-21&rft.volume=8&rft.issue=19&rft.spage=9693&rft.epage=97&rft.pages=9693-97&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d0ta00714e&rft_dat=%3Cproquest_cross%3E2404389176%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2404389176&rft_id=info:pmid/&rfr_iscdi=true |