A catalyst design for selective electrochemical reactions: direct production of hydrogen peroxide in advanced electrochemical oxidation

Hydrogen peroxide production by enhanced electrocatalysts is an attractive alternative to the present commercial process. While the subnano/atomic dispersion in noble metal nanocatalysts is known to strongly enhance their catalytic efficiency and chemoselectivity, their excessive surface energy and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2020-01, Vol.8 (19), p.9859-987
Hauptverfasser: Ko, Young-Jin, Choi, Keunsu, Yang, Boram, Lee, Woong Hee, Kim, Jun-Yong, Choi, Jae-Woo, Chae, Keun Hwa, Lee, Jun Hee, Hwang, Yun Jeong, Min, Byoung Koun, Oh, Hyung-Suk, Lee, Wook-Seong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 987
container_issue 19
container_start_page 9859
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 8
creator Ko, Young-Jin
Choi, Keunsu
Yang, Boram
Lee, Woong Hee
Kim, Jun-Yong
Choi, Jae-Woo
Chae, Keun Hwa
Lee, Jun Hee
Hwang, Yun Jeong
Min, Byoung Koun
Oh, Hyung-Suk
Lee, Wook-Seong
description Hydrogen peroxide production by enhanced electrocatalysts is an attractive alternative to the present commercial process. While the subnano/atomic dispersion in noble metal nanocatalysts is known to strongly enhance their catalytic efficiency and chemoselectivity, their excessive surface energy and consequent coarsening seriously compromise their physical/chemical stability. Here, we report a subnano/atomically dispersed Pt-Ag alloy (by a simply modified polyol process) that is resistant to agglomeration/Ostwald ripening. This catalyst does not follow a conventional four-electron oxygen reduction reaction (ORR) but selectively produces H 2 O 2 without excessive degradation of its activity. We clarified the role of the alloying element, Ag, as follows: (1) selective activation of two-electron ORR by inhibiting O 2 dissociation and (2) suppression of H 2 O 2 decomposition by preventing the H 2 O 2 adsorption. The present approach provides a convenient route for the direct generation of H 2 O 2 as a simple byproduct of electricity generation by fuel-cell systems. Hydrogen peroxide production by enhanced electrocatalysts is an attractive alternative to the present commercial process.
doi_str_mv 10.1039/d0ta01869d
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2404388209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2404388209</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-16c9d4b6e122ee1886c7ae40226dd9220422a3378caec2579856dae8789a87e93</originalsourceid><addsrcrecordid>eNp9kU1PwzAMhiMEEtPYhTtSEDekgpN2acJt2viSJnEZ5yok7tapa0rSTdsv4G_TbmgckPDFlv34tWUTcsngjkGs7i00GpgUyp6QHochRGmixOkxlvKcDEJYQmsSQCjVI18janSjy11oqMVQzCuaO08DlmiaYoN0H3hnFrgqjC6pR90WXBUeqC18W6O1d3a9z1GX08XOejfHitbo3bawSIuKarvRlUH7R60jdNd6Qc5yXQYc_Pg-eX96nI1founb8-t4NI1MwqCJmDDKJh8CGeeITEphUo0JcC6sVZxDwrmO41QajYYPUyWHwmqUqVRapqjiPrk56LZbf64xNNnSrX3Vjsx4AkksJYeOuj1QxrsQPOZZ7YuV9ruMQdbdOpvAbLS_9aSFrw-wD-bI_f4iq23eMlf_MfE3FYOJLQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2404388209</pqid></control><display><type>article</type><title>A catalyst design for selective electrochemical reactions: direct production of hydrogen peroxide in advanced electrochemical oxidation</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Ko, Young-Jin ; Choi, Keunsu ; Yang, Boram ; Lee, Woong Hee ; Kim, Jun-Yong ; Choi, Jae-Woo ; Chae, Keun Hwa ; Lee, Jun Hee ; Hwang, Yun Jeong ; Min, Byoung Koun ; Oh, Hyung-Suk ; Lee, Wook-Seong</creator><creatorcontrib>Ko, Young-Jin ; Choi, Keunsu ; Yang, Boram ; Lee, Woong Hee ; Kim, Jun-Yong ; Choi, Jae-Woo ; Chae, Keun Hwa ; Lee, Jun Hee ; Hwang, Yun Jeong ; Min, Byoung Koun ; Oh, Hyung-Suk ; Lee, Wook-Seong</creatorcontrib><description>Hydrogen peroxide production by enhanced electrocatalysts is an attractive alternative to the present commercial process. While the subnano/atomic dispersion in noble metal nanocatalysts is known to strongly enhance their catalytic efficiency and chemoselectivity, their excessive surface energy and consequent coarsening seriously compromise their physical/chemical stability. Here, we report a subnano/atomically dispersed Pt-Ag alloy (by a simply modified polyol process) that is resistant to agglomeration/Ostwald ripening. This catalyst does not follow a conventional four-electron oxygen reduction reaction (ORR) but selectively produces H 2 O 2 without excessive degradation of its activity. We clarified the role of the alloying element, Ag, as follows: (1) selective activation of two-electron ORR by inhibiting O 2 dissociation and (2) suppression of H 2 O 2 decomposition by preventing the H 2 O 2 adsorption. The present approach provides a convenient route for the direct generation of H 2 O 2 as a simple byproduct of electricity generation by fuel-cell systems. Hydrogen peroxide production by enhanced electrocatalysts is an attractive alternative to the present commercial process.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d0ta01869d</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Alloying elements ; Catalysts ; Chemical reactions ; Chemical reduction ; Dispersion ; Electrocatalysts ; Electrochemical oxidation ; Electrochemistry ; Hydrogen peroxide ; Hydrogen production ; Noble metals ; Ostwald ripening ; Oxidation ; Oxygen reduction reactions ; Platinum ; Silver base alloys ; Surface energy ; Surface properties</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2020-01, Vol.8 (19), p.9859-987</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-16c9d4b6e122ee1886c7ae40226dd9220422a3378caec2579856dae8789a87e93</citedby><cites>FETCH-LOGICAL-c410t-16c9d4b6e122ee1886c7ae40226dd9220422a3378caec2579856dae8789a87e93</cites><orcidid>0000-0002-0980-1758 ; 0000-0003-3894-670X ; 0000-0001-5766-0251 ; 0000-0002-0310-6666</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ko, Young-Jin</creatorcontrib><creatorcontrib>Choi, Keunsu</creatorcontrib><creatorcontrib>Yang, Boram</creatorcontrib><creatorcontrib>Lee, Woong Hee</creatorcontrib><creatorcontrib>Kim, Jun-Yong</creatorcontrib><creatorcontrib>Choi, Jae-Woo</creatorcontrib><creatorcontrib>Chae, Keun Hwa</creatorcontrib><creatorcontrib>Lee, Jun Hee</creatorcontrib><creatorcontrib>Hwang, Yun Jeong</creatorcontrib><creatorcontrib>Min, Byoung Koun</creatorcontrib><creatorcontrib>Oh, Hyung-Suk</creatorcontrib><creatorcontrib>Lee, Wook-Seong</creatorcontrib><title>A catalyst design for selective electrochemical reactions: direct production of hydrogen peroxide in advanced electrochemical oxidation</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Hydrogen peroxide production by enhanced electrocatalysts is an attractive alternative to the present commercial process. While the subnano/atomic dispersion in noble metal nanocatalysts is known to strongly enhance their catalytic efficiency and chemoselectivity, their excessive surface energy and consequent coarsening seriously compromise their physical/chemical stability. Here, we report a subnano/atomically dispersed Pt-Ag alloy (by a simply modified polyol process) that is resistant to agglomeration/Ostwald ripening. This catalyst does not follow a conventional four-electron oxygen reduction reaction (ORR) but selectively produces H 2 O 2 without excessive degradation of its activity. We clarified the role of the alloying element, Ag, as follows: (1) selective activation of two-electron ORR by inhibiting O 2 dissociation and (2) suppression of H 2 O 2 decomposition by preventing the H 2 O 2 adsorption. The present approach provides a convenient route for the direct generation of H 2 O 2 as a simple byproduct of electricity generation by fuel-cell systems. Hydrogen peroxide production by enhanced electrocatalysts is an attractive alternative to the present commercial process.</description><subject>Alloying elements</subject><subject>Catalysts</subject><subject>Chemical reactions</subject><subject>Chemical reduction</subject><subject>Dispersion</subject><subject>Electrocatalysts</subject><subject>Electrochemical oxidation</subject><subject>Electrochemistry</subject><subject>Hydrogen peroxide</subject><subject>Hydrogen production</subject><subject>Noble metals</subject><subject>Ostwald ripening</subject><subject>Oxidation</subject><subject>Oxygen reduction reactions</subject><subject>Platinum</subject><subject>Silver base alloys</subject><subject>Surface energy</subject><subject>Surface properties</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kU1PwzAMhiMEEtPYhTtSEDekgpN2acJt2viSJnEZ5yok7tapa0rSTdsv4G_TbmgckPDFlv34tWUTcsngjkGs7i00GpgUyp6QHochRGmixOkxlvKcDEJYQmsSQCjVI18janSjy11oqMVQzCuaO08DlmiaYoN0H3hnFrgqjC6pR90WXBUeqC18W6O1d3a9z1GX08XOejfHitbo3bawSIuKarvRlUH7R60jdNd6Qc5yXQYc_Pg-eX96nI1founb8-t4NI1MwqCJmDDKJh8CGeeITEphUo0JcC6sVZxDwrmO41QajYYPUyWHwmqUqVRapqjiPrk56LZbf64xNNnSrX3Vjsx4AkksJYeOuj1QxrsQPOZZ7YuV9ruMQdbdOpvAbLS_9aSFrw-wD-bI_f4iq23eMlf_MfE3FYOJLQ</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Ko, Young-Jin</creator><creator>Choi, Keunsu</creator><creator>Yang, Boram</creator><creator>Lee, Woong Hee</creator><creator>Kim, Jun-Yong</creator><creator>Choi, Jae-Woo</creator><creator>Chae, Keun Hwa</creator><creator>Lee, Jun Hee</creator><creator>Hwang, Yun Jeong</creator><creator>Min, Byoung Koun</creator><creator>Oh, Hyung-Suk</creator><creator>Lee, Wook-Seong</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-0980-1758</orcidid><orcidid>https://orcid.org/0000-0003-3894-670X</orcidid><orcidid>https://orcid.org/0000-0001-5766-0251</orcidid><orcidid>https://orcid.org/0000-0002-0310-6666</orcidid></search><sort><creationdate>20200101</creationdate><title>A catalyst design for selective electrochemical reactions: direct production of hydrogen peroxide in advanced electrochemical oxidation</title><author>Ko, Young-Jin ; Choi, Keunsu ; Yang, Boram ; Lee, Woong Hee ; Kim, Jun-Yong ; Choi, Jae-Woo ; Chae, Keun Hwa ; Lee, Jun Hee ; Hwang, Yun Jeong ; Min, Byoung Koun ; Oh, Hyung-Suk ; Lee, Wook-Seong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-16c9d4b6e122ee1886c7ae40226dd9220422a3378caec2579856dae8789a87e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alloying elements</topic><topic>Catalysts</topic><topic>Chemical reactions</topic><topic>Chemical reduction</topic><topic>Dispersion</topic><topic>Electrocatalysts</topic><topic>Electrochemical oxidation</topic><topic>Electrochemistry</topic><topic>Hydrogen peroxide</topic><topic>Hydrogen production</topic><topic>Noble metals</topic><topic>Ostwald ripening</topic><topic>Oxidation</topic><topic>Oxygen reduction reactions</topic><topic>Platinum</topic><topic>Silver base alloys</topic><topic>Surface energy</topic><topic>Surface properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ko, Young-Jin</creatorcontrib><creatorcontrib>Choi, Keunsu</creatorcontrib><creatorcontrib>Yang, Boram</creatorcontrib><creatorcontrib>Lee, Woong Hee</creatorcontrib><creatorcontrib>Kim, Jun-Yong</creatorcontrib><creatorcontrib>Choi, Jae-Woo</creatorcontrib><creatorcontrib>Chae, Keun Hwa</creatorcontrib><creatorcontrib>Lee, Jun Hee</creatorcontrib><creatorcontrib>Hwang, Yun Jeong</creatorcontrib><creatorcontrib>Min, Byoung Koun</creatorcontrib><creatorcontrib>Oh, Hyung-Suk</creatorcontrib><creatorcontrib>Lee, Wook-Seong</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ko, Young-Jin</au><au>Choi, Keunsu</au><au>Yang, Boram</au><au>Lee, Woong Hee</au><au>Kim, Jun-Yong</au><au>Choi, Jae-Woo</au><au>Chae, Keun Hwa</au><au>Lee, Jun Hee</au><au>Hwang, Yun Jeong</au><au>Min, Byoung Koun</au><au>Oh, Hyung-Suk</au><au>Lee, Wook-Seong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A catalyst design for selective electrochemical reactions: direct production of hydrogen peroxide in advanced electrochemical oxidation</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>8</volume><issue>19</issue><spage>9859</spage><epage>987</epage><pages>9859-987</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Hydrogen peroxide production by enhanced electrocatalysts is an attractive alternative to the present commercial process. While the subnano/atomic dispersion in noble metal nanocatalysts is known to strongly enhance their catalytic efficiency and chemoselectivity, their excessive surface energy and consequent coarsening seriously compromise their physical/chemical stability. Here, we report a subnano/atomically dispersed Pt-Ag alloy (by a simply modified polyol process) that is resistant to agglomeration/Ostwald ripening. This catalyst does not follow a conventional four-electron oxygen reduction reaction (ORR) but selectively produces H 2 O 2 without excessive degradation of its activity. We clarified the role of the alloying element, Ag, as follows: (1) selective activation of two-electron ORR by inhibiting O 2 dissociation and (2) suppression of H 2 O 2 decomposition by preventing the H 2 O 2 adsorption. The present approach provides a convenient route for the direct generation of H 2 O 2 as a simple byproduct of electricity generation by fuel-cell systems. Hydrogen peroxide production by enhanced electrocatalysts is an attractive alternative to the present commercial process.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0ta01869d</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0980-1758</orcidid><orcidid>https://orcid.org/0000-0003-3894-670X</orcidid><orcidid>https://orcid.org/0000-0001-5766-0251</orcidid><orcidid>https://orcid.org/0000-0002-0310-6666</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2020-01, Vol.8 (19), p.9859-987
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_2404388209
source Royal Society Of Chemistry Journals 2008-
subjects Alloying elements
Catalysts
Chemical reactions
Chemical reduction
Dispersion
Electrocatalysts
Electrochemical oxidation
Electrochemistry
Hydrogen peroxide
Hydrogen production
Noble metals
Ostwald ripening
Oxidation
Oxygen reduction reactions
Platinum
Silver base alloys
Surface energy
Surface properties
title A catalyst design for selective electrochemical reactions: direct production of hydrogen peroxide in advanced electrochemical oxidation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T15%3A06%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20catalyst%20design%20for%20selective%20electrochemical%20reactions:%20direct%20production%20of%20hydrogen%20peroxide%20in%20advanced%20electrochemical%20oxidation&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Ko,%20Young-Jin&rft.date=2020-01-01&rft.volume=8&rft.issue=19&rft.spage=9859&rft.epage=987&rft.pages=9859-987&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d0ta01869d&rft_dat=%3Cproquest_cross%3E2404388209%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2404388209&rft_id=info:pmid/&rfr_iscdi=true