A catalyst design for selective electrochemical reactions: direct production of hydrogen peroxide in advanced electrochemical oxidation
Hydrogen peroxide production by enhanced electrocatalysts is an attractive alternative to the present commercial process. While the subnano/atomic dispersion in noble metal nanocatalysts is known to strongly enhance their catalytic efficiency and chemoselectivity, their excessive surface energy and...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2020-01, Vol.8 (19), p.9859-987 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 987 |
---|---|
container_issue | 19 |
container_start_page | 9859 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 8 |
creator | Ko, Young-Jin Choi, Keunsu Yang, Boram Lee, Woong Hee Kim, Jun-Yong Choi, Jae-Woo Chae, Keun Hwa Lee, Jun Hee Hwang, Yun Jeong Min, Byoung Koun Oh, Hyung-Suk Lee, Wook-Seong |
description | Hydrogen peroxide production by enhanced electrocatalysts is an attractive alternative to the present commercial process. While the subnano/atomic dispersion in noble metal nanocatalysts is known to strongly enhance their catalytic efficiency and chemoselectivity, their excessive surface energy and consequent coarsening seriously compromise their physical/chemical stability. Here, we report a subnano/atomically dispersed Pt-Ag alloy (by a simply modified polyol process) that is resistant to agglomeration/Ostwald ripening. This catalyst does not follow a conventional four-electron oxygen reduction reaction (ORR) but selectively produces H
2
O
2
without excessive degradation of its activity. We clarified the role of the alloying element, Ag, as follows: (1) selective activation of two-electron ORR by inhibiting O
2
dissociation and (2) suppression of H
2
O
2
decomposition by preventing the H
2
O
2
adsorption. The present approach provides a convenient route for the direct generation of H
2
O
2
as a simple byproduct of electricity generation by fuel-cell systems.
Hydrogen peroxide production by enhanced electrocatalysts is an attractive alternative to the present commercial process. |
doi_str_mv | 10.1039/d0ta01869d |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2404388209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2404388209</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-16c9d4b6e122ee1886c7ae40226dd9220422a3378caec2579856dae8789a87e93</originalsourceid><addsrcrecordid>eNp9kU1PwzAMhiMEEtPYhTtSEDekgpN2acJt2viSJnEZ5yok7tapa0rSTdsv4G_TbmgckPDFlv34tWUTcsngjkGs7i00GpgUyp6QHochRGmixOkxlvKcDEJYQmsSQCjVI18janSjy11oqMVQzCuaO08DlmiaYoN0H3hnFrgqjC6pR90WXBUeqC18W6O1d3a9z1GX08XOejfHitbo3bawSIuKarvRlUH7R60jdNd6Qc5yXQYc_Pg-eX96nI1founb8-t4NI1MwqCJmDDKJh8CGeeITEphUo0JcC6sVZxDwrmO41QajYYPUyWHwmqUqVRapqjiPrk56LZbf64xNNnSrX3Vjsx4AkksJYeOuj1QxrsQPOZZ7YuV9ruMQdbdOpvAbLS_9aSFrw-wD-bI_f4iq23eMlf_MfE3FYOJLQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2404388209</pqid></control><display><type>article</type><title>A catalyst design for selective electrochemical reactions: direct production of hydrogen peroxide in advanced electrochemical oxidation</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Ko, Young-Jin ; Choi, Keunsu ; Yang, Boram ; Lee, Woong Hee ; Kim, Jun-Yong ; Choi, Jae-Woo ; Chae, Keun Hwa ; Lee, Jun Hee ; Hwang, Yun Jeong ; Min, Byoung Koun ; Oh, Hyung-Suk ; Lee, Wook-Seong</creator><creatorcontrib>Ko, Young-Jin ; Choi, Keunsu ; Yang, Boram ; Lee, Woong Hee ; Kim, Jun-Yong ; Choi, Jae-Woo ; Chae, Keun Hwa ; Lee, Jun Hee ; Hwang, Yun Jeong ; Min, Byoung Koun ; Oh, Hyung-Suk ; Lee, Wook-Seong</creatorcontrib><description>Hydrogen peroxide production by enhanced electrocatalysts is an attractive alternative to the present commercial process. While the subnano/atomic dispersion in noble metal nanocatalysts is known to strongly enhance their catalytic efficiency and chemoselectivity, their excessive surface energy and consequent coarsening seriously compromise their physical/chemical stability. Here, we report a subnano/atomically dispersed Pt-Ag alloy (by a simply modified polyol process) that is resistant to agglomeration/Ostwald ripening. This catalyst does not follow a conventional four-electron oxygen reduction reaction (ORR) but selectively produces H
2
O
2
without excessive degradation of its activity. We clarified the role of the alloying element, Ag, as follows: (1) selective activation of two-electron ORR by inhibiting O
2
dissociation and (2) suppression of H
2
O
2
decomposition by preventing the H
2
O
2
adsorption. The present approach provides a convenient route for the direct generation of H
2
O
2
as a simple byproduct of electricity generation by fuel-cell systems.
Hydrogen peroxide production by enhanced electrocatalysts is an attractive alternative to the present commercial process.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d0ta01869d</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Alloying elements ; Catalysts ; Chemical reactions ; Chemical reduction ; Dispersion ; Electrocatalysts ; Electrochemical oxidation ; Electrochemistry ; Hydrogen peroxide ; Hydrogen production ; Noble metals ; Ostwald ripening ; Oxidation ; Oxygen reduction reactions ; Platinum ; Silver base alloys ; Surface energy ; Surface properties</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2020-01, Vol.8 (19), p.9859-987</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-16c9d4b6e122ee1886c7ae40226dd9220422a3378caec2579856dae8789a87e93</citedby><cites>FETCH-LOGICAL-c410t-16c9d4b6e122ee1886c7ae40226dd9220422a3378caec2579856dae8789a87e93</cites><orcidid>0000-0002-0980-1758 ; 0000-0003-3894-670X ; 0000-0001-5766-0251 ; 0000-0002-0310-6666</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ko, Young-Jin</creatorcontrib><creatorcontrib>Choi, Keunsu</creatorcontrib><creatorcontrib>Yang, Boram</creatorcontrib><creatorcontrib>Lee, Woong Hee</creatorcontrib><creatorcontrib>Kim, Jun-Yong</creatorcontrib><creatorcontrib>Choi, Jae-Woo</creatorcontrib><creatorcontrib>Chae, Keun Hwa</creatorcontrib><creatorcontrib>Lee, Jun Hee</creatorcontrib><creatorcontrib>Hwang, Yun Jeong</creatorcontrib><creatorcontrib>Min, Byoung Koun</creatorcontrib><creatorcontrib>Oh, Hyung-Suk</creatorcontrib><creatorcontrib>Lee, Wook-Seong</creatorcontrib><title>A catalyst design for selective electrochemical reactions: direct production of hydrogen peroxide in advanced electrochemical oxidation</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Hydrogen peroxide production by enhanced electrocatalysts is an attractive alternative to the present commercial process. While the subnano/atomic dispersion in noble metal nanocatalysts is known to strongly enhance their catalytic efficiency and chemoselectivity, their excessive surface energy and consequent coarsening seriously compromise their physical/chemical stability. Here, we report a subnano/atomically dispersed Pt-Ag alloy (by a simply modified polyol process) that is resistant to agglomeration/Ostwald ripening. This catalyst does not follow a conventional four-electron oxygen reduction reaction (ORR) but selectively produces H
2
O
2
without excessive degradation of its activity. We clarified the role of the alloying element, Ag, as follows: (1) selective activation of two-electron ORR by inhibiting O
2
dissociation and (2) suppression of H
2
O
2
decomposition by preventing the H
2
O
2
adsorption. The present approach provides a convenient route for the direct generation of H
2
O
2
as a simple byproduct of electricity generation by fuel-cell systems.
Hydrogen peroxide production by enhanced electrocatalysts is an attractive alternative to the present commercial process.</description><subject>Alloying elements</subject><subject>Catalysts</subject><subject>Chemical reactions</subject><subject>Chemical reduction</subject><subject>Dispersion</subject><subject>Electrocatalysts</subject><subject>Electrochemical oxidation</subject><subject>Electrochemistry</subject><subject>Hydrogen peroxide</subject><subject>Hydrogen production</subject><subject>Noble metals</subject><subject>Ostwald ripening</subject><subject>Oxidation</subject><subject>Oxygen reduction reactions</subject><subject>Platinum</subject><subject>Silver base alloys</subject><subject>Surface energy</subject><subject>Surface properties</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kU1PwzAMhiMEEtPYhTtSEDekgpN2acJt2viSJnEZ5yok7tapa0rSTdsv4G_TbmgckPDFlv34tWUTcsngjkGs7i00GpgUyp6QHochRGmixOkxlvKcDEJYQmsSQCjVI18janSjy11oqMVQzCuaO08DlmiaYoN0H3hnFrgqjC6pR90WXBUeqC18W6O1d3a9z1GX08XOejfHitbo3bawSIuKarvRlUH7R60jdNd6Qc5yXQYc_Pg-eX96nI1founb8-t4NI1MwqCJmDDKJh8CGeeITEphUo0JcC6sVZxDwrmO41QajYYPUyWHwmqUqVRapqjiPrk56LZbf64xNNnSrX3Vjsx4AkksJYeOuj1QxrsQPOZZ7YuV9ruMQdbdOpvAbLS_9aSFrw-wD-bI_f4iq23eMlf_MfE3FYOJLQ</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Ko, Young-Jin</creator><creator>Choi, Keunsu</creator><creator>Yang, Boram</creator><creator>Lee, Woong Hee</creator><creator>Kim, Jun-Yong</creator><creator>Choi, Jae-Woo</creator><creator>Chae, Keun Hwa</creator><creator>Lee, Jun Hee</creator><creator>Hwang, Yun Jeong</creator><creator>Min, Byoung Koun</creator><creator>Oh, Hyung-Suk</creator><creator>Lee, Wook-Seong</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-0980-1758</orcidid><orcidid>https://orcid.org/0000-0003-3894-670X</orcidid><orcidid>https://orcid.org/0000-0001-5766-0251</orcidid><orcidid>https://orcid.org/0000-0002-0310-6666</orcidid></search><sort><creationdate>20200101</creationdate><title>A catalyst design for selective electrochemical reactions: direct production of hydrogen peroxide in advanced electrochemical oxidation</title><author>Ko, Young-Jin ; Choi, Keunsu ; Yang, Boram ; Lee, Woong Hee ; Kim, Jun-Yong ; Choi, Jae-Woo ; Chae, Keun Hwa ; Lee, Jun Hee ; Hwang, Yun Jeong ; Min, Byoung Koun ; Oh, Hyung-Suk ; Lee, Wook-Seong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-16c9d4b6e122ee1886c7ae40226dd9220422a3378caec2579856dae8789a87e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alloying elements</topic><topic>Catalysts</topic><topic>Chemical reactions</topic><topic>Chemical reduction</topic><topic>Dispersion</topic><topic>Electrocatalysts</topic><topic>Electrochemical oxidation</topic><topic>Electrochemistry</topic><topic>Hydrogen peroxide</topic><topic>Hydrogen production</topic><topic>Noble metals</topic><topic>Ostwald ripening</topic><topic>Oxidation</topic><topic>Oxygen reduction reactions</topic><topic>Platinum</topic><topic>Silver base alloys</topic><topic>Surface energy</topic><topic>Surface properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ko, Young-Jin</creatorcontrib><creatorcontrib>Choi, Keunsu</creatorcontrib><creatorcontrib>Yang, Boram</creatorcontrib><creatorcontrib>Lee, Woong Hee</creatorcontrib><creatorcontrib>Kim, Jun-Yong</creatorcontrib><creatorcontrib>Choi, Jae-Woo</creatorcontrib><creatorcontrib>Chae, Keun Hwa</creatorcontrib><creatorcontrib>Lee, Jun Hee</creatorcontrib><creatorcontrib>Hwang, Yun Jeong</creatorcontrib><creatorcontrib>Min, Byoung Koun</creatorcontrib><creatorcontrib>Oh, Hyung-Suk</creatorcontrib><creatorcontrib>Lee, Wook-Seong</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ko, Young-Jin</au><au>Choi, Keunsu</au><au>Yang, Boram</au><au>Lee, Woong Hee</au><au>Kim, Jun-Yong</au><au>Choi, Jae-Woo</au><au>Chae, Keun Hwa</au><au>Lee, Jun Hee</au><au>Hwang, Yun Jeong</au><au>Min, Byoung Koun</au><au>Oh, Hyung-Suk</au><au>Lee, Wook-Seong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A catalyst design for selective electrochemical reactions: direct production of hydrogen peroxide in advanced electrochemical oxidation</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>8</volume><issue>19</issue><spage>9859</spage><epage>987</epage><pages>9859-987</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Hydrogen peroxide production by enhanced electrocatalysts is an attractive alternative to the present commercial process. While the subnano/atomic dispersion in noble metal nanocatalysts is known to strongly enhance their catalytic efficiency and chemoselectivity, their excessive surface energy and consequent coarsening seriously compromise their physical/chemical stability. Here, we report a subnano/atomically dispersed Pt-Ag alloy (by a simply modified polyol process) that is resistant to agglomeration/Ostwald ripening. This catalyst does not follow a conventional four-electron oxygen reduction reaction (ORR) but selectively produces H
2
O
2
without excessive degradation of its activity. We clarified the role of the alloying element, Ag, as follows: (1) selective activation of two-electron ORR by inhibiting O
2
dissociation and (2) suppression of H
2
O
2
decomposition by preventing the H
2
O
2
adsorption. The present approach provides a convenient route for the direct generation of H
2
O
2
as a simple byproduct of electricity generation by fuel-cell systems.
Hydrogen peroxide production by enhanced electrocatalysts is an attractive alternative to the present commercial process.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0ta01869d</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0980-1758</orcidid><orcidid>https://orcid.org/0000-0003-3894-670X</orcidid><orcidid>https://orcid.org/0000-0001-5766-0251</orcidid><orcidid>https://orcid.org/0000-0002-0310-6666</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2020-01, Vol.8 (19), p.9859-987 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_journals_2404388209 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Alloying elements Catalysts Chemical reactions Chemical reduction Dispersion Electrocatalysts Electrochemical oxidation Electrochemistry Hydrogen peroxide Hydrogen production Noble metals Ostwald ripening Oxidation Oxygen reduction reactions Platinum Silver base alloys Surface energy Surface properties |
title | A catalyst design for selective electrochemical reactions: direct production of hydrogen peroxide in advanced electrochemical oxidation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T15%3A06%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20catalyst%20design%20for%20selective%20electrochemical%20reactions:%20direct%20production%20of%20hydrogen%20peroxide%20in%20advanced%20electrochemical%20oxidation&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Ko,%20Young-Jin&rft.date=2020-01-01&rft.volume=8&rft.issue=19&rft.spage=9859&rft.epage=987&rft.pages=9859-987&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d0ta01869d&rft_dat=%3Cproquest_cross%3E2404388209%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2404388209&rft_id=info:pmid/&rfr_iscdi=true |