Vertically aligned carbon nanotubes grown on reduced graphene oxide as high-performance thermal interface materials
Efficient thermal dissipation is one of the most critical factors constraining the development of modern microelectronic devices. Placing vertically aligned carbon nanotubes (VACNTs) with anisotropic thermal conductive between high-power devices and heat sink such as copper plate can improve the int...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2020-08, Vol.55 (22), p.9414-9424 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9424 |
---|---|
container_issue | 22 |
container_start_page | 9414 |
container_title | Journal of materials science |
container_volume | 55 |
creator | Hu, Yi Chiang, Sun-Wai Chu, Xiaodong Li, Jia Gan, Lin He, Yanbing Li, Baohua Kang, Feiyu Du, Hongda |
description | Efficient thermal dissipation is one of the most critical factors constraining the development of modern microelectronic devices. Placing vertically aligned carbon nanotubes (VACNTs) with anisotropic thermal conductive between high-power devices and heat sink such as copper plate can improve the interfacial thermal conductance. Due to the limited contact area between CNTs and the surface of the devices, direct use of ACNTs as thermal interface material fails to meet people’s expectations. Here, we employ reduced graphene oxide (rGO) as the substrate for the growth of CNT arrays. VACNTs grown on rGO (rGO-ACNT) by chemical vapor deposition are then used as thermal conducting filler in epoxy resin. Compared with direct contact between CNT and the interface, using CNT and reduced graphene oxide junction to form contact with the surface can improve heat transfer efficiency. The resultant composite film exhibited excellent thermal conductivity at 9.62 W m
−1
K
−1
along the thickness direction. The obtained rGO-ACNT and its composite present higher thermal conductivity and heat transfer ability than ACNT. This strategy offers an insight into the easy preparation of flexible and highly thermal conductive composite materials, which may enable potential applications in advanced electronic devices. |
doi_str_mv | 10.1007/s10853-020-04681-9 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2404249584</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A624350975</galeid><sourcerecordid>A624350975</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-c6460181d0cededf6f97cf2c7db2f3d2df0be18830307a4f5f972053d479f1a3</originalsourceid><addsrcrecordid>eNp9kU1rVTEQhoMoeK3-AVcBVy7STj7O17IUrYWCoMVtyE0m56acm1yTHGz_vdEjlG5kFjO887yZwEvIew7nHGC4KBzGTjIQwED1I2fTC7Lj3SCZGkG-JDsAIZhQPX9N3pRyDwDdIPiOlB-Ya7BmWR6pWcIc0VFr8j5FGk1Mdd1joXNOvyJtUka32kbM2ZwOGJGmh-CQmkIPYT6wE2af8tFEi7QesE0LDbE21TTlaNoUzFLekle-NXz3r5-Ru8-f7q6-sNuv1zdXl7fMyklUZnvVAx-5g3YSne_9NFgv7OD2wksnnIc98nGUIGEwyndtL6CTTg2T50aekQ_bs6ecfq5Yqr5Pa47tohYKlFBTN6pGnW_UbBbUIfpUs7GtHB6DTRF9aPplL5TsYBq6Zvj4zNCYig91Nmsp-ub7t-es2FibUykZvT7lcDT5UXPQf4LTW3C6Baf_BqenZpKbqTQ4zpif_v0f12_F2Jx0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2404249584</pqid></control><display><type>article</type><title>Vertically aligned carbon nanotubes grown on reduced graphene oxide as high-performance thermal interface materials</title><source>Springer Nature - Complete Springer Journals</source><creator>Hu, Yi ; Chiang, Sun-Wai ; Chu, Xiaodong ; Li, Jia ; Gan, Lin ; He, Yanbing ; Li, Baohua ; Kang, Feiyu ; Du, Hongda</creator><creatorcontrib>Hu, Yi ; Chiang, Sun-Wai ; Chu, Xiaodong ; Li, Jia ; Gan, Lin ; He, Yanbing ; Li, Baohua ; Kang, Feiyu ; Du, Hongda</creatorcontrib><description>Efficient thermal dissipation is one of the most critical factors constraining the development of modern microelectronic devices. Placing vertically aligned carbon nanotubes (VACNTs) with anisotropic thermal conductive between high-power devices and heat sink such as copper plate can improve the interfacial thermal conductance. Due to the limited contact area between CNTs and the surface of the devices, direct use of ACNTs as thermal interface material fails to meet people’s expectations. Here, we employ reduced graphene oxide (rGO) as the substrate for the growth of CNT arrays. VACNTs grown on rGO (rGO-ACNT) by chemical vapor deposition are then used as thermal conducting filler in epoxy resin. Compared with direct contact between CNT and the interface, using CNT and reduced graphene oxide junction to form contact with the surface can improve heat transfer efficiency. The resultant composite film exhibited excellent thermal conductivity at 9.62 W m
−1
K
−1
along the thickness direction. The obtained rGO-ACNT and its composite present higher thermal conductivity and heat transfer ability than ACNT. This strategy offers an insight into the easy preparation of flexible and highly thermal conductive composite materials, which may enable potential applications in advanced electronic devices.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-020-04681-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Anisotropy ; Carbon nanotubes ; Characterization and Evaluation of Materials ; Chemical vapor deposition ; Chemistry and Materials Science ; Classical Mechanics ; Composite materials ; Composites & Nanocomposites ; Crystallography and Scattering Methods ; Electric properties ; Electronic devices ; Epoxy resins ; Graphene ; Graphite ; Heat conductivity ; Heat sinks ; Heat transfer ; Materials Science ; Metal plates ; Nanotubes ; Polymer Sciences ; Solid Mechanics ; Substrates ; Thermal conductivity</subject><ispartof>Journal of materials science, 2020-08, Vol.55 (22), p.9414-9424</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-c6460181d0cededf6f97cf2c7db2f3d2df0be18830307a4f5f972053d479f1a3</citedby><cites>FETCH-LOGICAL-c392t-c6460181d0cededf6f97cf2c7db2f3d2df0be18830307a4f5f972053d479f1a3</cites><orcidid>0000-0001-7662-5777</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-020-04681-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-020-04681-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Hu, Yi</creatorcontrib><creatorcontrib>Chiang, Sun-Wai</creatorcontrib><creatorcontrib>Chu, Xiaodong</creatorcontrib><creatorcontrib>Li, Jia</creatorcontrib><creatorcontrib>Gan, Lin</creatorcontrib><creatorcontrib>He, Yanbing</creatorcontrib><creatorcontrib>Li, Baohua</creatorcontrib><creatorcontrib>Kang, Feiyu</creatorcontrib><creatorcontrib>Du, Hongda</creatorcontrib><title>Vertically aligned carbon nanotubes grown on reduced graphene oxide as high-performance thermal interface materials</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Efficient thermal dissipation is one of the most critical factors constraining the development of modern microelectronic devices. Placing vertically aligned carbon nanotubes (VACNTs) with anisotropic thermal conductive between high-power devices and heat sink such as copper plate can improve the interfacial thermal conductance. Due to the limited contact area between CNTs and the surface of the devices, direct use of ACNTs as thermal interface material fails to meet people’s expectations. Here, we employ reduced graphene oxide (rGO) as the substrate for the growth of CNT arrays. VACNTs grown on rGO (rGO-ACNT) by chemical vapor deposition are then used as thermal conducting filler in epoxy resin. Compared with direct contact between CNT and the interface, using CNT and reduced graphene oxide junction to form contact with the surface can improve heat transfer efficiency. The resultant composite film exhibited excellent thermal conductivity at 9.62 W m
−1
K
−1
along the thickness direction. The obtained rGO-ACNT and its composite present higher thermal conductivity and heat transfer ability than ACNT. This strategy offers an insight into the easy preparation of flexible and highly thermal conductive composite materials, which may enable potential applications in advanced electronic devices.</description><subject>Anisotropy</subject><subject>Carbon nanotubes</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical vapor deposition</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Composite materials</subject><subject>Composites & Nanocomposites</subject><subject>Crystallography and Scattering Methods</subject><subject>Electric properties</subject><subject>Electronic devices</subject><subject>Epoxy resins</subject><subject>Graphene</subject><subject>Graphite</subject><subject>Heat conductivity</subject><subject>Heat sinks</subject><subject>Heat transfer</subject><subject>Materials Science</subject><subject>Metal plates</subject><subject>Nanotubes</subject><subject>Polymer Sciences</subject><subject>Solid Mechanics</subject><subject>Substrates</subject><subject>Thermal conductivity</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kU1rVTEQhoMoeK3-AVcBVy7STj7O17IUrYWCoMVtyE0m56acm1yTHGz_vdEjlG5kFjO887yZwEvIew7nHGC4KBzGTjIQwED1I2fTC7Lj3SCZGkG-JDsAIZhQPX9N3pRyDwDdIPiOlB-Ya7BmWR6pWcIc0VFr8j5FGk1Mdd1joXNOvyJtUka32kbM2ZwOGJGmh-CQmkIPYT6wE2af8tFEi7QesE0LDbE21TTlaNoUzFLekle-NXz3r5-Ru8-f7q6-sNuv1zdXl7fMyklUZnvVAx-5g3YSne_9NFgv7OD2wksnnIc98nGUIGEwyndtL6CTTg2T50aekQ_bs6ecfq5Yqr5Pa47tohYKlFBTN6pGnW_UbBbUIfpUs7GtHB6DTRF9aPplL5TsYBq6Zvj4zNCYig91Nmsp-ub7t-es2FibUykZvT7lcDT5UXPQf4LTW3C6Baf_BqenZpKbqTQ4zpif_v0f12_F2Jx0</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Hu, Yi</creator><creator>Chiang, Sun-Wai</creator><creator>Chu, Xiaodong</creator><creator>Li, Jia</creator><creator>Gan, Lin</creator><creator>He, Yanbing</creator><creator>Li, Baohua</creator><creator>Kang, Feiyu</creator><creator>Du, Hongda</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-7662-5777</orcidid></search><sort><creationdate>20200801</creationdate><title>Vertically aligned carbon nanotubes grown on reduced graphene oxide as high-performance thermal interface materials</title><author>Hu, Yi ; Chiang, Sun-Wai ; Chu, Xiaodong ; Li, Jia ; Gan, Lin ; He, Yanbing ; Li, Baohua ; Kang, Feiyu ; Du, Hongda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-c6460181d0cededf6f97cf2c7db2f3d2df0be18830307a4f5f972053d479f1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anisotropy</topic><topic>Carbon nanotubes</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical vapor deposition</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Composite materials</topic><topic>Composites & Nanocomposites</topic><topic>Crystallography and Scattering Methods</topic><topic>Electric properties</topic><topic>Electronic devices</topic><topic>Epoxy resins</topic><topic>Graphene</topic><topic>Graphite</topic><topic>Heat conductivity</topic><topic>Heat sinks</topic><topic>Heat transfer</topic><topic>Materials Science</topic><topic>Metal plates</topic><topic>Nanotubes</topic><topic>Polymer Sciences</topic><topic>Solid Mechanics</topic><topic>Substrates</topic><topic>Thermal conductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Yi</creatorcontrib><creatorcontrib>Chiang, Sun-Wai</creatorcontrib><creatorcontrib>Chu, Xiaodong</creatorcontrib><creatorcontrib>Li, Jia</creatorcontrib><creatorcontrib>Gan, Lin</creatorcontrib><creatorcontrib>He, Yanbing</creatorcontrib><creatorcontrib>Li, Baohua</creatorcontrib><creatorcontrib>Kang, Feiyu</creatorcontrib><creatorcontrib>Du, Hongda</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Yi</au><au>Chiang, Sun-Wai</au><au>Chu, Xiaodong</au><au>Li, Jia</au><au>Gan, Lin</au><au>He, Yanbing</au><au>Li, Baohua</au><au>Kang, Feiyu</au><au>Du, Hongda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vertically aligned carbon nanotubes grown on reduced graphene oxide as high-performance thermal interface materials</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>55</volume><issue>22</issue><spage>9414</spage><epage>9424</epage><pages>9414-9424</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Efficient thermal dissipation is one of the most critical factors constraining the development of modern microelectronic devices. Placing vertically aligned carbon nanotubes (VACNTs) with anisotropic thermal conductive between high-power devices and heat sink such as copper plate can improve the interfacial thermal conductance. Due to the limited contact area between CNTs and the surface of the devices, direct use of ACNTs as thermal interface material fails to meet people’s expectations. Here, we employ reduced graphene oxide (rGO) as the substrate for the growth of CNT arrays. VACNTs grown on rGO (rGO-ACNT) by chemical vapor deposition are then used as thermal conducting filler in epoxy resin. Compared with direct contact between CNT and the interface, using CNT and reduced graphene oxide junction to form contact with the surface can improve heat transfer efficiency. The resultant composite film exhibited excellent thermal conductivity at 9.62 W m
−1
K
−1
along the thickness direction. The obtained rGO-ACNT and its composite present higher thermal conductivity and heat transfer ability than ACNT. This strategy offers an insight into the easy preparation of flexible and highly thermal conductive composite materials, which may enable potential applications in advanced electronic devices.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-020-04681-9</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7662-5777</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2020-08, Vol.55 (22), p.9414-9424 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_journals_2404249584 |
source | Springer Nature - Complete Springer Journals |
subjects | Anisotropy Carbon nanotubes Characterization and Evaluation of Materials Chemical vapor deposition Chemistry and Materials Science Classical Mechanics Composite materials Composites & Nanocomposites Crystallography and Scattering Methods Electric properties Electronic devices Epoxy resins Graphene Graphite Heat conductivity Heat sinks Heat transfer Materials Science Metal plates Nanotubes Polymer Sciences Solid Mechanics Substrates Thermal conductivity |
title | Vertically aligned carbon nanotubes grown on reduced graphene oxide as high-performance thermal interface materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T18%3A32%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vertically%20aligned%20carbon%20nanotubes%20grown%20on%20reduced%20graphene%20oxide%20as%20high-performance%20thermal%20interface%20materials&rft.jtitle=Journal%20of%20materials%20science&rft.au=Hu,%20Yi&rft.date=2020-08-01&rft.volume=55&rft.issue=22&rft.spage=9414&rft.epage=9424&rft.pages=9414-9424&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-020-04681-9&rft_dat=%3Cgale_proqu%3EA624350975%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2404249584&rft_id=info:pmid/&rft_galeid=A624350975&rfr_iscdi=true |