Holomorphic Factorization of Mappings into \( \operatorname{Sp}_{4}( \mathbb{C}) \)

We prove that any null-homotopic holomorphic map from a Stein space \(X\) to the symplectic group \(\operatorname{Sp}_{4}(\mathbb{C})\) can be written as a finite product of elementary symplectic matrices with holomorphic entries.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-05
Hauptverfasser: Ivarsson, Björn, Kutzschebauch, Frank, Løw, Erik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Ivarsson, Björn
Kutzschebauch, Frank
Løw, Erik
description We prove that any null-homotopic holomorphic map from a Stein space \(X\) to the symplectic group \(\operatorname{Sp}_{4}(\mathbb{C})\) can be written as a finite product of elementary symplectic matrices with holomorphic entries.
doi_str_mv 10.48550/arxiv.2005.07454
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2404183986</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2404183986</sourcerecordid><originalsourceid>FETCH-proquest_journals_24041839863</originalsourceid><addsrcrecordid>eNqNjL0KwjAYAIMgKOoDuAVcdLB-zY_WWRQXpzoWSiytRtp-MYkilr67HXwAp4PjOEKmIQQikhJWyr71K2AAMoCNkKJHhozzcBkJxgZk4twdANh6w6TkQxIfscQKrbnpjB5U5tHqj_Iaa4oFPSljdH11VNceaTKnCZrcqi6qVZU3sWnTRrSdrpS_XS7Nrl3QZDEm_UKVLp_8OCKzw_68Oy6Nxcczdz6947M7lC5lAkQY8W205v9VX4zgRh0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2404183986</pqid></control><display><type>article</type><title>Holomorphic Factorization of Mappings into \( \operatorname{Sp}_{4}( \mathbb{C}) \)</title><source>Free E- Journals</source><creator>Ivarsson, Björn ; Kutzschebauch, Frank ; Løw, Erik</creator><creatorcontrib>Ivarsson, Björn ; Kutzschebauch, Frank ; Løw, Erik</creatorcontrib><description>We prove that any null-homotopic holomorphic map from a Stein space \(X\) to the symplectic group \(\operatorname{Sp}_{4}(\mathbb{C})\) can be written as a finite product of elementary symplectic matrices with holomorphic entries.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2005.07454</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Mathematical analysis</subject><ispartof>arXiv.org, 2020-05</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784,27925</link.rule.ids></links><search><creatorcontrib>Ivarsson, Björn</creatorcontrib><creatorcontrib>Kutzschebauch, Frank</creatorcontrib><creatorcontrib>Løw, Erik</creatorcontrib><title>Holomorphic Factorization of Mappings into \( \operatorname{Sp}_{4}( \mathbb{C}) \)</title><title>arXiv.org</title><description>We prove that any null-homotopic holomorphic map from a Stein space \(X\) to the symplectic group \(\operatorname{Sp}_{4}(\mathbb{C})\) can be written as a finite product of elementary symplectic matrices with holomorphic entries.</description><subject>Mathematical analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjL0KwjAYAIMgKOoDuAVcdLB-zY_WWRQXpzoWSiytRtp-MYkilr67HXwAp4PjOEKmIQQikhJWyr71K2AAMoCNkKJHhozzcBkJxgZk4twdANh6w6TkQxIfscQKrbnpjB5U5tHqj_Iaa4oFPSljdH11VNceaTKnCZrcqi6qVZU3sWnTRrSdrpS_XS7Nrl3QZDEm_UKVLp_8OCKzw_68Oy6Nxcczdz6947M7lC5lAkQY8W205v9VX4zgRh0</recordid><startdate>20200515</startdate><enddate>20200515</enddate><creator>Ivarsson, Björn</creator><creator>Kutzschebauch, Frank</creator><creator>Løw, Erik</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200515</creationdate><title>Holomorphic Factorization of Mappings into \( \operatorname{Sp}_{4}( \mathbb{C}) \)</title><author>Ivarsson, Björn ; Kutzschebauch, Frank ; Løw, Erik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24041839863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Mathematical analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Ivarsson, Björn</creatorcontrib><creatorcontrib>Kutzschebauch, Frank</creatorcontrib><creatorcontrib>Løw, Erik</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ivarsson, Björn</au><au>Kutzschebauch, Frank</au><au>Løw, Erik</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Holomorphic Factorization of Mappings into \( \operatorname{Sp}_{4}( \mathbb{C}) \)</atitle><jtitle>arXiv.org</jtitle><date>2020-05-15</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>We prove that any null-homotopic holomorphic map from a Stein space \(X\) to the symplectic group \(\operatorname{Sp}_{4}(\mathbb{C})\) can be written as a finite product of elementary symplectic matrices with holomorphic entries.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2005.07454</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2404183986
source Free E- Journals
subjects Mathematical analysis
title Holomorphic Factorization of Mappings into \( \operatorname{Sp}_{4}( \mathbb{C}) \)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A35%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Holomorphic%20Factorization%20of%20Mappings%20into%20%5C(%20%5Coperatorname%7BSp%7D_%7B4%7D(%20%5Cmathbb%7BC%7D)%20%5C)&rft.jtitle=arXiv.org&rft.au=Ivarsson,%20Bj%C3%B6rn&rft.date=2020-05-15&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2005.07454&rft_dat=%3Cproquest%3E2404183986%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2404183986&rft_id=info:pmid/&rfr_iscdi=true