Nonequilibrium pseudogap Anderson impurity model: A master equation tensor network approach

We study equilibrium and nonequilibrium properties of the single-impurity Anderson model with a power-law pseudogap in the density of states. In equilibrium, the model is known to display a quantum phase transition from a generalized Kondo to a local moment phase. In the present work, we focus on th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2020-04, Vol.101 (16), p.1, Article 165132
Hauptverfasser: Fugger, Delia M., Bauernfeind, Daniel, Sorantin, Max E., Arrigoni, Enrico
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 16
container_start_page 1
container_title Physical review. B
container_volume 101
creator Fugger, Delia M.
Bauernfeind, Daniel
Sorantin, Max E.
Arrigoni, Enrico
description We study equilibrium and nonequilibrium properties of the single-impurity Anderson model with a power-law pseudogap in the density of states. In equilibrium, the model is known to display a quantum phase transition from a generalized Kondo to a local moment phase. In the present work, we focus on the extension of these phases beyond equilibrium, i.e., under the influence of a bias voltage. Within the auxiliary master equation approach combined with a scheme based on matrix product states (MPS) we are able to directly address the current-carrying steady state. Starting with the equilibrium situation, we first corroborate our results by comparing to a direct numerical evaluation of ground-state spectral properties of the system by MPS. Here, a scheme to locate the phase boundary by extrapolating the power-law exponent of the self energy produces a very good agreement with previous results obtained by the numerical renormalization group. Our nonequilibrium study as a function of the applied bias voltage is then carried out for two points on either side of the phase boundary. In the Kondo regime the resonance in the spectral function is split as a function of the increasing bias voltage. The local moment regime, instead, displays a dip in the spectrum near the position of the chemical potentials. Similar features are observed in the corresponding self energies. The Kondo split peaks approximately obey a power-law behavior as a function of frequency whose exponents depend only slightly on voltage. Finally, the differential conductance in the Kondo regime shows a peculiar maximum at finite voltages, whose height, however, is below the accuracy level.
doi_str_mv 10.1103/PhysRevB.101.165132
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2404076618</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2404076618</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-2275cc559e4ea4e583158cbb0495616c4d42d0b0070265c26a0db4012650b9613</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWLS_wEvA89aZbJJtvNXiFxQV0ZOHJZtNbWp3s012lf57I1VP88Ez88JDyBnCBBHyi6fVLj7bz6sJAk5QCszZARkxLlWmlFSH_72AYzKOcQ0AKEEVoEbk7cG3dju4jauCGxraRTvU_l13dNbWNkTfUtd0Q3D9jja-tptLOqONjr0NNN3p3iWit230gba2__Lhg-quC16b1Sk5WupNtOPfekJeb65f5nfZ4vH2fj5bZIYVRZ8xVghjhFCWW82tmOYopqaqgCshURpec1ZDBVAAk8IwqaGuOGAaoFIS8xNyvv-bYreDjX259kNoU2TJOHAopMRpovI9ZYKPMdhl2QXX6LArEcofkeWfyLTAci8y_wakhmhE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2404076618</pqid></control><display><type>article</type><title>Nonequilibrium pseudogap Anderson impurity model: A master equation tensor network approach</title><source>American Physical Society Journals</source><creator>Fugger, Delia M. ; Bauernfeind, Daniel ; Sorantin, Max E. ; Arrigoni, Enrico</creator><creatorcontrib>Fugger, Delia M. ; Bauernfeind, Daniel ; Sorantin, Max E. ; Arrigoni, Enrico</creatorcontrib><description>We study equilibrium and nonequilibrium properties of the single-impurity Anderson model with a power-law pseudogap in the density of states. In equilibrium, the model is known to display a quantum phase transition from a generalized Kondo to a local moment phase. In the present work, we focus on the extension of these phases beyond equilibrium, i.e., under the influence of a bias voltage. Within the auxiliary master equation approach combined with a scheme based on matrix product states (MPS) we are able to directly address the current-carrying steady state. Starting with the equilibrium situation, we first corroborate our results by comparing to a direct numerical evaluation of ground-state spectral properties of the system by MPS. Here, a scheme to locate the phase boundary by extrapolating the power-law exponent of the self energy produces a very good agreement with previous results obtained by the numerical renormalization group. Our nonequilibrium study as a function of the applied bias voltage is then carried out for two points on either side of the phase boundary. In the Kondo regime the resonance in the spectral function is split as a function of the increasing bias voltage. The local moment regime, instead, displays a dip in the spectrum near the position of the chemical potentials. Similar features are observed in the corresponding self energies. The Kondo split peaks approximately obey a power-law behavior as a function of frequency whose exponents depend only slightly on voltage. Finally, the differential conductance in the Kondo regime shows a peculiar maximum at finite voltages, whose height, however, is below the accuracy level.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.101.165132</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Bias ; Electric potential ; Equilibrium ; Impurities ; Mathematical models ; Phase boundaries ; Phase transitions ; Power law ; Resistance ; Tensors ; Voltage</subject><ispartof>Physical review. B, 2020-04, Vol.101 (16), p.1, Article 165132</ispartof><rights>Copyright American Physical Society Apr 16, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c277t-2275cc559e4ea4e583158cbb0495616c4d42d0b0070265c26a0db4012650b9613</citedby><cites>FETCH-LOGICAL-c277t-2275cc559e4ea4e583158cbb0495616c4d42d0b0070265c26a0db4012650b9613</cites><orcidid>0000-0002-1347-3080</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,2865,2866,27913,27914</link.rule.ids></links><search><creatorcontrib>Fugger, Delia M.</creatorcontrib><creatorcontrib>Bauernfeind, Daniel</creatorcontrib><creatorcontrib>Sorantin, Max E.</creatorcontrib><creatorcontrib>Arrigoni, Enrico</creatorcontrib><title>Nonequilibrium pseudogap Anderson impurity model: A master equation tensor network approach</title><title>Physical review. B</title><description>We study equilibrium and nonequilibrium properties of the single-impurity Anderson model with a power-law pseudogap in the density of states. In equilibrium, the model is known to display a quantum phase transition from a generalized Kondo to a local moment phase. In the present work, we focus on the extension of these phases beyond equilibrium, i.e., under the influence of a bias voltage. Within the auxiliary master equation approach combined with a scheme based on matrix product states (MPS) we are able to directly address the current-carrying steady state. Starting with the equilibrium situation, we first corroborate our results by comparing to a direct numerical evaluation of ground-state spectral properties of the system by MPS. Here, a scheme to locate the phase boundary by extrapolating the power-law exponent of the self energy produces a very good agreement with previous results obtained by the numerical renormalization group. Our nonequilibrium study as a function of the applied bias voltage is then carried out for two points on either side of the phase boundary. In the Kondo regime the resonance in the spectral function is split as a function of the increasing bias voltage. The local moment regime, instead, displays a dip in the spectrum near the position of the chemical potentials. Similar features are observed in the corresponding self energies. The Kondo split peaks approximately obey a power-law behavior as a function of frequency whose exponents depend only slightly on voltage. Finally, the differential conductance in the Kondo regime shows a peculiar maximum at finite voltages, whose height, however, is below the accuracy level.</description><subject>Bias</subject><subject>Electric potential</subject><subject>Equilibrium</subject><subject>Impurities</subject><subject>Mathematical models</subject><subject>Phase boundaries</subject><subject>Phase transitions</subject><subject>Power law</subject><subject>Resistance</subject><subject>Tensors</subject><subject>Voltage</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWLS_wEvA89aZbJJtvNXiFxQV0ZOHJZtNbWp3s012lf57I1VP88Ez88JDyBnCBBHyi6fVLj7bz6sJAk5QCszZARkxLlWmlFSH_72AYzKOcQ0AKEEVoEbk7cG3dju4jauCGxraRTvU_l13dNbWNkTfUtd0Q3D9jja-tptLOqONjr0NNN3p3iWit230gba2__Lhg-quC16b1Sk5WupNtOPfekJeb65f5nfZ4vH2fj5bZIYVRZ8xVghjhFCWW82tmOYopqaqgCshURpec1ZDBVAAk8IwqaGuOGAaoFIS8xNyvv-bYreDjX259kNoU2TJOHAopMRpovI9ZYKPMdhl2QXX6LArEcofkeWfyLTAci8y_wakhmhE</recordid><startdate>20200423</startdate><enddate>20200423</enddate><creator>Fugger, Delia M.</creator><creator>Bauernfeind, Daniel</creator><creator>Sorantin, Max E.</creator><creator>Arrigoni, Enrico</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1347-3080</orcidid></search><sort><creationdate>20200423</creationdate><title>Nonequilibrium pseudogap Anderson impurity model: A master equation tensor network approach</title><author>Fugger, Delia M. ; Bauernfeind, Daniel ; Sorantin, Max E. ; Arrigoni, Enrico</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-2275cc559e4ea4e583158cbb0495616c4d42d0b0070265c26a0db4012650b9613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bias</topic><topic>Electric potential</topic><topic>Equilibrium</topic><topic>Impurities</topic><topic>Mathematical models</topic><topic>Phase boundaries</topic><topic>Phase transitions</topic><topic>Power law</topic><topic>Resistance</topic><topic>Tensors</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fugger, Delia M.</creatorcontrib><creatorcontrib>Bauernfeind, Daniel</creatorcontrib><creatorcontrib>Sorantin, Max E.</creatorcontrib><creatorcontrib>Arrigoni, Enrico</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fugger, Delia M.</au><au>Bauernfeind, Daniel</au><au>Sorantin, Max E.</au><au>Arrigoni, Enrico</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonequilibrium pseudogap Anderson impurity model: A master equation tensor network approach</atitle><jtitle>Physical review. B</jtitle><date>2020-04-23</date><risdate>2020</risdate><volume>101</volume><issue>16</issue><spage>1</spage><pages>1-</pages><artnum>165132</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>We study equilibrium and nonequilibrium properties of the single-impurity Anderson model with a power-law pseudogap in the density of states. In equilibrium, the model is known to display a quantum phase transition from a generalized Kondo to a local moment phase. In the present work, we focus on the extension of these phases beyond equilibrium, i.e., under the influence of a bias voltage. Within the auxiliary master equation approach combined with a scheme based on matrix product states (MPS) we are able to directly address the current-carrying steady state. Starting with the equilibrium situation, we first corroborate our results by comparing to a direct numerical evaluation of ground-state spectral properties of the system by MPS. Here, a scheme to locate the phase boundary by extrapolating the power-law exponent of the self energy produces a very good agreement with previous results obtained by the numerical renormalization group. Our nonequilibrium study as a function of the applied bias voltage is then carried out for two points on either side of the phase boundary. In the Kondo regime the resonance in the spectral function is split as a function of the increasing bias voltage. The local moment regime, instead, displays a dip in the spectrum near the position of the chemical potentials. Similar features are observed in the corresponding self energies. The Kondo split peaks approximately obey a power-law behavior as a function of frequency whose exponents depend only slightly on voltage. Finally, the differential conductance in the Kondo regime shows a peculiar maximum at finite voltages, whose height, however, is below the accuracy level.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.101.165132</doi><orcidid>https://orcid.org/0000-0002-1347-3080</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2020-04, Vol.101 (16), p.1, Article 165132
issn 2469-9950
2469-9969
language eng
recordid cdi_proquest_journals_2404076618
source American Physical Society Journals
subjects Bias
Electric potential
Equilibrium
Impurities
Mathematical models
Phase boundaries
Phase transitions
Power law
Resistance
Tensors
Voltage
title Nonequilibrium pseudogap Anderson impurity model: A master equation tensor network approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T08%3A49%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonequilibrium%20pseudogap%20Anderson%20impurity%20model:%20A%20master%20equation%20tensor%20network%20approach&rft.jtitle=Physical%20review.%20B&rft.au=Fugger,%20Delia%20M.&rft.date=2020-04-23&rft.volume=101&rft.issue=16&rft.spage=1&rft.pages=1-&rft.artnum=165132&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.101.165132&rft_dat=%3Cproquest_cross%3E2404076618%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2404076618&rft_id=info:pmid/&rfr_iscdi=true