Realistic Indoor Hybrid WiFi and OFDMA-Based LiFi Networks
The increasing number of mobile devices challenges the current radio frequency (RF) networks, e.g. wireless fidelity (WiFi) networks. Light Fidelity (LiFi) is considered as a promising complementary technology, which operates within the visible light spectrum and infrared spectrum. In an indoor scen...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on communications 2020-05, Vol.68 (5), p.2978-2991 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2991 |
---|---|
container_issue | 5 |
container_start_page | 2978 |
container_title | IEEE transactions on communications |
container_volume | 68 |
creator | Zeng, Zhihong Dehghani Soltani, Mohammad Wang, Yunlu Wu, Xiping Haas, Harald |
description | The increasing number of mobile devices challenges the current radio frequency (RF) networks, e.g. wireless fidelity (WiFi) networks. Light Fidelity (LiFi) is considered as a promising complementary technology, which operates within the visible light spectrum and infrared spectrum. In an indoor scenario, a hybrid LiFi/WiFi network (HLWN) provides a potential solution to future wireless communications where LiFi augments WiFi in providing ultra-high speed and low latency wireless connectivity. In this paper, dynamic load balancing (LB) with handover in HLWNs is studied. The orientation-based random waypoint (ORWP) mobility model is considered to provide a more realistic framework to evaluate the performance of HLWNs. Based on the low-pass filtering effect of the LiFi channel, we firstly propose an orthogonal frequency division multiplexing access (OFDMA)-based resource allocation (RA) method in LiFi systems. Also, an enhanced evolutionary game theory (EGT)-based LB scheme with handover in HLWNs is proposed. In the EGT scheme, each user adapts their strategy to improve the payoff until LB is achieved across LiFi and WiFi. Then, the LiFi system uses the proposed OFDMA-based RA method while the WiFi system applies the carrier sense multiple access with collision detection (CSMA/CA). Simulation results show that in the LiFi system the OFDMA-based RA scheme outperforms the time division multiple access (TDMA) scheme in terms of both user data rate and fairness. Regarding LB in HLWNs, the proposed EGT scheme can achieve a remarkable enhancement in throughput compared to benchmark schemes, such as hard threshold (HT) scheme and random access point assignment (RAA) scheme. |
doi_str_mv | 10.1109/TCOMM.2020.2974458 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2404040360</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9000881</ieee_id><sourcerecordid>2404040360</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-77a9164523da7b9f07fabb08e077d48beb30e6a090e799858b74fc3d717768d43</originalsourceid><addsrcrecordid>eNo9kFFLwzAQx4MoOKdfQF8KPndemqSX-DY35wabA5n4GJImhc65zqRD9u1t3ZB7ODj-v7vjR8gthQGloB5Wo-ViMcggg0GmkHMhz0iPCiFTkALPSQ9AQZojyktyFeMaADgw1iOPb95sqthURTLburoOyfRgQ-WSj2pSJWbrkuVkvBimTyZ6l8y74atvfurwGa_JRWk20d-cep-8T55Xo2k6X77MRsN5WmRKNCmiUTTnImPOoFUlYGmsBekB0XFpvWXgc9P-51EpKaRFXhbMIUXMpeOsT-6Pe3eh_t772Oh1vQ_b9qTOOHTFcmhT2TFVhDrG4Eu9C9WXCQdNQXeO9J8j3TnSJ0ctdHeEKu_9P6BaO1JS9gvM11_z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2404040360</pqid></control><display><type>article</type><title>Realistic Indoor Hybrid WiFi and OFDMA-Based LiFi Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Zeng, Zhihong ; Dehghani Soltani, Mohammad ; Wang, Yunlu ; Wu, Xiping ; Haas, Harald</creator><creatorcontrib>Zeng, Zhihong ; Dehghani Soltani, Mohammad ; Wang, Yunlu ; Wu, Xiping ; Haas, Harald</creatorcontrib><description>The increasing number of mobile devices challenges the current radio frequency (RF) networks, e.g. wireless fidelity (WiFi) networks. Light Fidelity (LiFi) is considered as a promising complementary technology, which operates within the visible light spectrum and infrared spectrum. In an indoor scenario, a hybrid LiFi/WiFi network (HLWN) provides a potential solution to future wireless communications where LiFi augments WiFi in providing ultra-high speed and low latency wireless connectivity. In this paper, dynamic load balancing (LB) with handover in HLWNs is studied. The orientation-based random waypoint (ORWP) mobility model is considered to provide a more realistic framework to evaluate the performance of HLWNs. Based on the low-pass filtering effect of the LiFi channel, we firstly propose an orthogonal frequency division multiplexing access (OFDMA)-based resource allocation (RA) method in LiFi systems. Also, an enhanced evolutionary game theory (EGT)-based LB scheme with handover in HLWNs is proposed. In the EGT scheme, each user adapts their strategy to improve the payoff until LB is achieved across LiFi and WiFi. Then, the LiFi system uses the proposed OFDMA-based RA method while the WiFi system applies the carrier sense multiple access with collision detection (CSMA/CA). Simulation results show that in the LiFi system the OFDMA-based RA scheme outperforms the time division multiple access (TDMA) scheme in terms of both user data rate and fairness. Regarding LB in HLWNs, the proposed EGT scheme can achieve a remarkable enhancement in throughput compared to benchmark schemes, such as hard threshold (HT) scheme and random access point assignment (RAA) scheme.</description><identifier>ISSN: 0090-6778</identifier><identifier>EISSN: 1558-0857</identifier><identifier>DOI: 10.1109/TCOMM.2020.2974458</identifier><identifier>CODEN: IECMBT</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Carrier sense multiple access-collision detection ; Computer simulation ; Downlink ; Dynamic loads ; Electronic devices ; Evolutionary game theory ; Game theory ; Handover ; handover overhead ; hybrid network ; Infrared radiation ; LiFi ; Light fidelity ; load balancing ; Low pass filters ; Network latency ; OFDMA ; Orthogonal Frequency Division Multiplexing ; Radio frequency ; Random access ; Resource allocation ; Time Division Multiple Access ; Uplink ; WiFi ; Wireless communications ; Wireless fidelity ; Wireless networks</subject><ispartof>IEEE transactions on communications, 2020-05, Vol.68 (5), p.2978-2991</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-77a9164523da7b9f07fabb08e077d48beb30e6a090e799858b74fc3d717768d43</citedby><cites>FETCH-LOGICAL-c295t-77a9164523da7b9f07fabb08e077d48beb30e6a090e799858b74fc3d717768d43</cites><orcidid>0000-0001-5794-2910 ; 0000-0001-9634-7241 ; 0000-0003-0548-8837 ; 0000-0001-6735-811X ; 0000-0001-9705-2701</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9000881$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9000881$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zeng, Zhihong</creatorcontrib><creatorcontrib>Dehghani Soltani, Mohammad</creatorcontrib><creatorcontrib>Wang, Yunlu</creatorcontrib><creatorcontrib>Wu, Xiping</creatorcontrib><creatorcontrib>Haas, Harald</creatorcontrib><title>Realistic Indoor Hybrid WiFi and OFDMA-Based LiFi Networks</title><title>IEEE transactions on communications</title><addtitle>TCOMM</addtitle><description>The increasing number of mobile devices challenges the current radio frequency (RF) networks, e.g. wireless fidelity (WiFi) networks. Light Fidelity (LiFi) is considered as a promising complementary technology, which operates within the visible light spectrum and infrared spectrum. In an indoor scenario, a hybrid LiFi/WiFi network (HLWN) provides a potential solution to future wireless communications where LiFi augments WiFi in providing ultra-high speed and low latency wireless connectivity. In this paper, dynamic load balancing (LB) with handover in HLWNs is studied. The orientation-based random waypoint (ORWP) mobility model is considered to provide a more realistic framework to evaluate the performance of HLWNs. Based on the low-pass filtering effect of the LiFi channel, we firstly propose an orthogonal frequency division multiplexing access (OFDMA)-based resource allocation (RA) method in LiFi systems. Also, an enhanced evolutionary game theory (EGT)-based LB scheme with handover in HLWNs is proposed. In the EGT scheme, each user adapts their strategy to improve the payoff until LB is achieved across LiFi and WiFi. Then, the LiFi system uses the proposed OFDMA-based RA method while the WiFi system applies the carrier sense multiple access with collision detection (CSMA/CA). Simulation results show that in the LiFi system the OFDMA-based RA scheme outperforms the time division multiple access (TDMA) scheme in terms of both user data rate and fairness. Regarding LB in HLWNs, the proposed EGT scheme can achieve a remarkable enhancement in throughput compared to benchmark schemes, such as hard threshold (HT) scheme and random access point assignment (RAA) scheme.</description><subject>Accuracy</subject><subject>Carrier sense multiple access-collision detection</subject><subject>Computer simulation</subject><subject>Downlink</subject><subject>Dynamic loads</subject><subject>Electronic devices</subject><subject>Evolutionary game theory</subject><subject>Game theory</subject><subject>Handover</subject><subject>handover overhead</subject><subject>hybrid network</subject><subject>Infrared radiation</subject><subject>LiFi</subject><subject>Light fidelity</subject><subject>load balancing</subject><subject>Low pass filters</subject><subject>Network latency</subject><subject>OFDMA</subject><subject>Orthogonal Frequency Division Multiplexing</subject><subject>Radio frequency</subject><subject>Random access</subject><subject>Resource allocation</subject><subject>Time Division Multiple Access</subject><subject>Uplink</subject><subject>WiFi</subject><subject>Wireless communications</subject><subject>Wireless fidelity</subject><subject>Wireless networks</subject><issn>0090-6778</issn><issn>1558-0857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFLwzAQx4MoOKdfQF8KPndemqSX-DY35wabA5n4GJImhc65zqRD9u1t3ZB7ODj-v7vjR8gthQGloB5Wo-ViMcggg0GmkHMhz0iPCiFTkALPSQ9AQZojyktyFeMaADgw1iOPb95sqthURTLburoOyfRgQ-WSj2pSJWbrkuVkvBimTyZ6l8y74atvfurwGa_JRWk20d-cep-8T55Xo2k6X77MRsN5WmRKNCmiUTTnImPOoFUlYGmsBekB0XFpvWXgc9P-51EpKaRFXhbMIUXMpeOsT-6Pe3eh_t772Oh1vQ_b9qTOOHTFcmhT2TFVhDrG4Eu9C9WXCQdNQXeO9J8j3TnSJ0ctdHeEKu_9P6BaO1JS9gvM11_z</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Zeng, Zhihong</creator><creator>Dehghani Soltani, Mohammad</creator><creator>Wang, Yunlu</creator><creator>Wu, Xiping</creator><creator>Haas, Harald</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5794-2910</orcidid><orcidid>https://orcid.org/0000-0001-9634-7241</orcidid><orcidid>https://orcid.org/0000-0003-0548-8837</orcidid><orcidid>https://orcid.org/0000-0001-6735-811X</orcidid><orcidid>https://orcid.org/0000-0001-9705-2701</orcidid></search><sort><creationdate>20200501</creationdate><title>Realistic Indoor Hybrid WiFi and OFDMA-Based LiFi Networks</title><author>Zeng, Zhihong ; Dehghani Soltani, Mohammad ; Wang, Yunlu ; Wu, Xiping ; Haas, Harald</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-77a9164523da7b9f07fabb08e077d48beb30e6a090e799858b74fc3d717768d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Carrier sense multiple access-collision detection</topic><topic>Computer simulation</topic><topic>Downlink</topic><topic>Dynamic loads</topic><topic>Electronic devices</topic><topic>Evolutionary game theory</topic><topic>Game theory</topic><topic>Handover</topic><topic>handover overhead</topic><topic>hybrid network</topic><topic>Infrared radiation</topic><topic>LiFi</topic><topic>Light fidelity</topic><topic>load balancing</topic><topic>Low pass filters</topic><topic>Network latency</topic><topic>OFDMA</topic><topic>Orthogonal Frequency Division Multiplexing</topic><topic>Radio frequency</topic><topic>Random access</topic><topic>Resource allocation</topic><topic>Time Division Multiple Access</topic><topic>Uplink</topic><topic>WiFi</topic><topic>Wireless communications</topic><topic>Wireless fidelity</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Zhihong</creatorcontrib><creatorcontrib>Dehghani Soltani, Mohammad</creatorcontrib><creatorcontrib>Wang, Yunlu</creatorcontrib><creatorcontrib>Wu, Xiping</creatorcontrib><creatorcontrib>Haas, Harald</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zeng, Zhihong</au><au>Dehghani Soltani, Mohammad</au><au>Wang, Yunlu</au><au>Wu, Xiping</au><au>Haas, Harald</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Realistic Indoor Hybrid WiFi and OFDMA-Based LiFi Networks</atitle><jtitle>IEEE transactions on communications</jtitle><stitle>TCOMM</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>68</volume><issue>5</issue><spage>2978</spage><epage>2991</epage><pages>2978-2991</pages><issn>0090-6778</issn><eissn>1558-0857</eissn><coden>IECMBT</coden><abstract>The increasing number of mobile devices challenges the current radio frequency (RF) networks, e.g. wireless fidelity (WiFi) networks. Light Fidelity (LiFi) is considered as a promising complementary technology, which operates within the visible light spectrum and infrared spectrum. In an indoor scenario, a hybrid LiFi/WiFi network (HLWN) provides a potential solution to future wireless communications where LiFi augments WiFi in providing ultra-high speed and low latency wireless connectivity. In this paper, dynamic load balancing (LB) with handover in HLWNs is studied. The orientation-based random waypoint (ORWP) mobility model is considered to provide a more realistic framework to evaluate the performance of HLWNs. Based on the low-pass filtering effect of the LiFi channel, we firstly propose an orthogonal frequency division multiplexing access (OFDMA)-based resource allocation (RA) method in LiFi systems. Also, an enhanced evolutionary game theory (EGT)-based LB scheme with handover in HLWNs is proposed. In the EGT scheme, each user adapts their strategy to improve the payoff until LB is achieved across LiFi and WiFi. Then, the LiFi system uses the proposed OFDMA-based RA method while the WiFi system applies the carrier sense multiple access with collision detection (CSMA/CA). Simulation results show that in the LiFi system the OFDMA-based RA scheme outperforms the time division multiple access (TDMA) scheme in terms of both user data rate and fairness. Regarding LB in HLWNs, the proposed EGT scheme can achieve a remarkable enhancement in throughput compared to benchmark schemes, such as hard threshold (HT) scheme and random access point assignment (RAA) scheme.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCOMM.2020.2974458</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5794-2910</orcidid><orcidid>https://orcid.org/0000-0001-9634-7241</orcidid><orcidid>https://orcid.org/0000-0003-0548-8837</orcidid><orcidid>https://orcid.org/0000-0001-6735-811X</orcidid><orcidid>https://orcid.org/0000-0001-9705-2701</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0090-6778 |
ispartof | IEEE transactions on communications, 2020-05, Vol.68 (5), p.2978-2991 |
issn | 0090-6778 1558-0857 |
language | eng |
recordid | cdi_proquest_journals_2404040360 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy Carrier sense multiple access-collision detection Computer simulation Downlink Dynamic loads Electronic devices Evolutionary game theory Game theory Handover handover overhead hybrid network Infrared radiation LiFi Light fidelity load balancing Low pass filters Network latency OFDMA Orthogonal Frequency Division Multiplexing Radio frequency Random access Resource allocation Time Division Multiple Access Uplink WiFi Wireless communications Wireless fidelity Wireless networks |
title | Realistic Indoor Hybrid WiFi and OFDMA-Based LiFi Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A43%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Realistic%20Indoor%20Hybrid%20WiFi%20and%20OFDMA-Based%20LiFi%20Networks&rft.jtitle=IEEE%20transactions%20on%20communications&rft.au=Zeng,%20Zhihong&rft.date=2020-05-01&rft.volume=68&rft.issue=5&rft.spage=2978&rft.epage=2991&rft.pages=2978-2991&rft.issn=0090-6778&rft.eissn=1558-0857&rft.coden=IECMBT&rft_id=info:doi/10.1109/TCOMM.2020.2974458&rft_dat=%3Cproquest_RIE%3E2404040360%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2404040360&rft_id=info:pmid/&rft_ieee_id=9000881&rfr_iscdi=true |