Realistic Indoor Hybrid WiFi and OFDMA-Based LiFi Networks

The increasing number of mobile devices challenges the current radio frequency (RF) networks, e.g. wireless fidelity (WiFi) networks. Light Fidelity (LiFi) is considered as a promising complementary technology, which operates within the visible light spectrum and infrared spectrum. In an indoor scen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on communications 2020-05, Vol.68 (5), p.2978-2991
Hauptverfasser: Zeng, Zhihong, Dehghani Soltani, Mohammad, Wang, Yunlu, Wu, Xiping, Haas, Harald
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2991
container_issue 5
container_start_page 2978
container_title IEEE transactions on communications
container_volume 68
creator Zeng, Zhihong
Dehghani Soltani, Mohammad
Wang, Yunlu
Wu, Xiping
Haas, Harald
description The increasing number of mobile devices challenges the current radio frequency (RF) networks, e.g. wireless fidelity (WiFi) networks. Light Fidelity (LiFi) is considered as a promising complementary technology, which operates within the visible light spectrum and infrared spectrum. In an indoor scenario, a hybrid LiFi/WiFi network (HLWN) provides a potential solution to future wireless communications where LiFi augments WiFi in providing ultra-high speed and low latency wireless connectivity. In this paper, dynamic load balancing (LB) with handover in HLWNs is studied. The orientation-based random waypoint (ORWP) mobility model is considered to provide a more realistic framework to evaluate the performance of HLWNs. Based on the low-pass filtering effect of the LiFi channel, we firstly propose an orthogonal frequency division multiplexing access (OFDMA)-based resource allocation (RA) method in LiFi systems. Also, an enhanced evolutionary game theory (EGT)-based LB scheme with handover in HLWNs is proposed. In the EGT scheme, each user adapts their strategy to improve the payoff until LB is achieved across LiFi and WiFi. Then, the LiFi system uses the proposed OFDMA-based RA method while the WiFi system applies the carrier sense multiple access with collision detection (CSMA/CA). Simulation results show that in the LiFi system the OFDMA-based RA scheme outperforms the time division multiple access (TDMA) scheme in terms of both user data rate and fairness. Regarding LB in HLWNs, the proposed EGT scheme can achieve a remarkable enhancement in throughput compared to benchmark schemes, such as hard threshold (HT) scheme and random access point assignment (RAA) scheme.
doi_str_mv 10.1109/TCOMM.2020.2974458
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2404040360</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9000881</ieee_id><sourcerecordid>2404040360</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-77a9164523da7b9f07fabb08e077d48beb30e6a090e799858b74fc3d717768d43</originalsourceid><addsrcrecordid>eNo9kFFLwzAQx4MoOKdfQF8KPndemqSX-DY35wabA5n4GJImhc65zqRD9u1t3ZB7ODj-v7vjR8gthQGloB5Wo-ViMcggg0GmkHMhz0iPCiFTkALPSQ9AQZojyktyFeMaADgw1iOPb95sqthURTLburoOyfRgQ-WSj2pSJWbrkuVkvBimTyZ6l8y74atvfurwGa_JRWk20d-cep-8T55Xo2k6X77MRsN5WmRKNCmiUTTnImPOoFUlYGmsBekB0XFpvWXgc9P-51EpKaRFXhbMIUXMpeOsT-6Pe3eh_t772Oh1vQ_b9qTOOHTFcmhT2TFVhDrG4Eu9C9WXCQdNQXeO9J8j3TnSJ0ctdHeEKu_9P6BaO1JS9gvM11_z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2404040360</pqid></control><display><type>article</type><title>Realistic Indoor Hybrid WiFi and OFDMA-Based LiFi Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Zeng, Zhihong ; Dehghani Soltani, Mohammad ; Wang, Yunlu ; Wu, Xiping ; Haas, Harald</creator><creatorcontrib>Zeng, Zhihong ; Dehghani Soltani, Mohammad ; Wang, Yunlu ; Wu, Xiping ; Haas, Harald</creatorcontrib><description>The increasing number of mobile devices challenges the current radio frequency (RF) networks, e.g. wireless fidelity (WiFi) networks. Light Fidelity (LiFi) is considered as a promising complementary technology, which operates within the visible light spectrum and infrared spectrum. In an indoor scenario, a hybrid LiFi/WiFi network (HLWN) provides a potential solution to future wireless communications where LiFi augments WiFi in providing ultra-high speed and low latency wireless connectivity. In this paper, dynamic load balancing (LB) with handover in HLWNs is studied. The orientation-based random waypoint (ORWP) mobility model is considered to provide a more realistic framework to evaluate the performance of HLWNs. Based on the low-pass filtering effect of the LiFi channel, we firstly propose an orthogonal frequency division multiplexing access (OFDMA)-based resource allocation (RA) method in LiFi systems. Also, an enhanced evolutionary game theory (EGT)-based LB scheme with handover in HLWNs is proposed. In the EGT scheme, each user adapts their strategy to improve the payoff until LB is achieved across LiFi and WiFi. Then, the LiFi system uses the proposed OFDMA-based RA method while the WiFi system applies the carrier sense multiple access with collision detection (CSMA/CA). Simulation results show that in the LiFi system the OFDMA-based RA scheme outperforms the time division multiple access (TDMA) scheme in terms of both user data rate and fairness. Regarding LB in HLWNs, the proposed EGT scheme can achieve a remarkable enhancement in throughput compared to benchmark schemes, such as hard threshold (HT) scheme and random access point assignment (RAA) scheme.</description><identifier>ISSN: 0090-6778</identifier><identifier>EISSN: 1558-0857</identifier><identifier>DOI: 10.1109/TCOMM.2020.2974458</identifier><identifier>CODEN: IECMBT</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Carrier sense multiple access-collision detection ; Computer simulation ; Downlink ; Dynamic loads ; Electronic devices ; Evolutionary game theory ; Game theory ; Handover ; handover overhead ; hybrid network ; Infrared radiation ; LiFi ; Light fidelity ; load balancing ; Low pass filters ; Network latency ; OFDMA ; Orthogonal Frequency Division Multiplexing ; Radio frequency ; Random access ; Resource allocation ; Time Division Multiple Access ; Uplink ; WiFi ; Wireless communications ; Wireless fidelity ; Wireless networks</subject><ispartof>IEEE transactions on communications, 2020-05, Vol.68 (5), p.2978-2991</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-77a9164523da7b9f07fabb08e077d48beb30e6a090e799858b74fc3d717768d43</citedby><cites>FETCH-LOGICAL-c295t-77a9164523da7b9f07fabb08e077d48beb30e6a090e799858b74fc3d717768d43</cites><orcidid>0000-0001-5794-2910 ; 0000-0001-9634-7241 ; 0000-0003-0548-8837 ; 0000-0001-6735-811X ; 0000-0001-9705-2701</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9000881$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9000881$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zeng, Zhihong</creatorcontrib><creatorcontrib>Dehghani Soltani, Mohammad</creatorcontrib><creatorcontrib>Wang, Yunlu</creatorcontrib><creatorcontrib>Wu, Xiping</creatorcontrib><creatorcontrib>Haas, Harald</creatorcontrib><title>Realistic Indoor Hybrid WiFi and OFDMA-Based LiFi Networks</title><title>IEEE transactions on communications</title><addtitle>TCOMM</addtitle><description>The increasing number of mobile devices challenges the current radio frequency (RF) networks, e.g. wireless fidelity (WiFi) networks. Light Fidelity (LiFi) is considered as a promising complementary technology, which operates within the visible light spectrum and infrared spectrum. In an indoor scenario, a hybrid LiFi/WiFi network (HLWN) provides a potential solution to future wireless communications where LiFi augments WiFi in providing ultra-high speed and low latency wireless connectivity. In this paper, dynamic load balancing (LB) with handover in HLWNs is studied. The orientation-based random waypoint (ORWP) mobility model is considered to provide a more realistic framework to evaluate the performance of HLWNs. Based on the low-pass filtering effect of the LiFi channel, we firstly propose an orthogonal frequency division multiplexing access (OFDMA)-based resource allocation (RA) method in LiFi systems. Also, an enhanced evolutionary game theory (EGT)-based LB scheme with handover in HLWNs is proposed. In the EGT scheme, each user adapts their strategy to improve the payoff until LB is achieved across LiFi and WiFi. Then, the LiFi system uses the proposed OFDMA-based RA method while the WiFi system applies the carrier sense multiple access with collision detection (CSMA/CA). Simulation results show that in the LiFi system the OFDMA-based RA scheme outperforms the time division multiple access (TDMA) scheme in terms of both user data rate and fairness. Regarding LB in HLWNs, the proposed EGT scheme can achieve a remarkable enhancement in throughput compared to benchmark schemes, such as hard threshold (HT) scheme and random access point assignment (RAA) scheme.</description><subject>Accuracy</subject><subject>Carrier sense multiple access-collision detection</subject><subject>Computer simulation</subject><subject>Downlink</subject><subject>Dynamic loads</subject><subject>Electronic devices</subject><subject>Evolutionary game theory</subject><subject>Game theory</subject><subject>Handover</subject><subject>handover overhead</subject><subject>hybrid network</subject><subject>Infrared radiation</subject><subject>LiFi</subject><subject>Light fidelity</subject><subject>load balancing</subject><subject>Low pass filters</subject><subject>Network latency</subject><subject>OFDMA</subject><subject>Orthogonal Frequency Division Multiplexing</subject><subject>Radio frequency</subject><subject>Random access</subject><subject>Resource allocation</subject><subject>Time Division Multiple Access</subject><subject>Uplink</subject><subject>WiFi</subject><subject>Wireless communications</subject><subject>Wireless fidelity</subject><subject>Wireless networks</subject><issn>0090-6778</issn><issn>1558-0857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFLwzAQx4MoOKdfQF8KPndemqSX-DY35wabA5n4GJImhc65zqRD9u1t3ZB7ODj-v7vjR8gthQGloB5Wo-ViMcggg0GmkHMhz0iPCiFTkALPSQ9AQZojyktyFeMaADgw1iOPb95sqthURTLburoOyfRgQ-WSj2pSJWbrkuVkvBimTyZ6l8y74atvfurwGa_JRWk20d-cep-8T55Xo2k6X77MRsN5WmRKNCmiUTTnImPOoFUlYGmsBekB0XFpvWXgc9P-51EpKaRFXhbMIUXMpeOsT-6Pe3eh_t772Oh1vQ_b9qTOOHTFcmhT2TFVhDrG4Eu9C9WXCQdNQXeO9J8j3TnSJ0ctdHeEKu_9P6BaO1JS9gvM11_z</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Zeng, Zhihong</creator><creator>Dehghani Soltani, Mohammad</creator><creator>Wang, Yunlu</creator><creator>Wu, Xiping</creator><creator>Haas, Harald</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5794-2910</orcidid><orcidid>https://orcid.org/0000-0001-9634-7241</orcidid><orcidid>https://orcid.org/0000-0003-0548-8837</orcidid><orcidid>https://orcid.org/0000-0001-6735-811X</orcidid><orcidid>https://orcid.org/0000-0001-9705-2701</orcidid></search><sort><creationdate>20200501</creationdate><title>Realistic Indoor Hybrid WiFi and OFDMA-Based LiFi Networks</title><author>Zeng, Zhihong ; Dehghani Soltani, Mohammad ; Wang, Yunlu ; Wu, Xiping ; Haas, Harald</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-77a9164523da7b9f07fabb08e077d48beb30e6a090e799858b74fc3d717768d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Carrier sense multiple access-collision detection</topic><topic>Computer simulation</topic><topic>Downlink</topic><topic>Dynamic loads</topic><topic>Electronic devices</topic><topic>Evolutionary game theory</topic><topic>Game theory</topic><topic>Handover</topic><topic>handover overhead</topic><topic>hybrid network</topic><topic>Infrared radiation</topic><topic>LiFi</topic><topic>Light fidelity</topic><topic>load balancing</topic><topic>Low pass filters</topic><topic>Network latency</topic><topic>OFDMA</topic><topic>Orthogonal Frequency Division Multiplexing</topic><topic>Radio frequency</topic><topic>Random access</topic><topic>Resource allocation</topic><topic>Time Division Multiple Access</topic><topic>Uplink</topic><topic>WiFi</topic><topic>Wireless communications</topic><topic>Wireless fidelity</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Zhihong</creatorcontrib><creatorcontrib>Dehghani Soltani, Mohammad</creatorcontrib><creatorcontrib>Wang, Yunlu</creatorcontrib><creatorcontrib>Wu, Xiping</creatorcontrib><creatorcontrib>Haas, Harald</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zeng, Zhihong</au><au>Dehghani Soltani, Mohammad</au><au>Wang, Yunlu</au><au>Wu, Xiping</au><au>Haas, Harald</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Realistic Indoor Hybrid WiFi and OFDMA-Based LiFi Networks</atitle><jtitle>IEEE transactions on communications</jtitle><stitle>TCOMM</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>68</volume><issue>5</issue><spage>2978</spage><epage>2991</epage><pages>2978-2991</pages><issn>0090-6778</issn><eissn>1558-0857</eissn><coden>IECMBT</coden><abstract>The increasing number of mobile devices challenges the current radio frequency (RF) networks, e.g. wireless fidelity (WiFi) networks. Light Fidelity (LiFi) is considered as a promising complementary technology, which operates within the visible light spectrum and infrared spectrum. In an indoor scenario, a hybrid LiFi/WiFi network (HLWN) provides a potential solution to future wireless communications where LiFi augments WiFi in providing ultra-high speed and low latency wireless connectivity. In this paper, dynamic load balancing (LB) with handover in HLWNs is studied. The orientation-based random waypoint (ORWP) mobility model is considered to provide a more realistic framework to evaluate the performance of HLWNs. Based on the low-pass filtering effect of the LiFi channel, we firstly propose an orthogonal frequency division multiplexing access (OFDMA)-based resource allocation (RA) method in LiFi systems. Also, an enhanced evolutionary game theory (EGT)-based LB scheme with handover in HLWNs is proposed. In the EGT scheme, each user adapts their strategy to improve the payoff until LB is achieved across LiFi and WiFi. Then, the LiFi system uses the proposed OFDMA-based RA method while the WiFi system applies the carrier sense multiple access with collision detection (CSMA/CA). Simulation results show that in the LiFi system the OFDMA-based RA scheme outperforms the time division multiple access (TDMA) scheme in terms of both user data rate and fairness. Regarding LB in HLWNs, the proposed EGT scheme can achieve a remarkable enhancement in throughput compared to benchmark schemes, such as hard threshold (HT) scheme and random access point assignment (RAA) scheme.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCOMM.2020.2974458</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5794-2910</orcidid><orcidid>https://orcid.org/0000-0001-9634-7241</orcidid><orcidid>https://orcid.org/0000-0003-0548-8837</orcidid><orcidid>https://orcid.org/0000-0001-6735-811X</orcidid><orcidid>https://orcid.org/0000-0001-9705-2701</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0090-6778
ispartof IEEE transactions on communications, 2020-05, Vol.68 (5), p.2978-2991
issn 0090-6778
1558-0857
language eng
recordid cdi_proquest_journals_2404040360
source IEEE Electronic Library (IEL)
subjects Accuracy
Carrier sense multiple access-collision detection
Computer simulation
Downlink
Dynamic loads
Electronic devices
Evolutionary game theory
Game theory
Handover
handover overhead
hybrid network
Infrared radiation
LiFi
Light fidelity
load balancing
Low pass filters
Network latency
OFDMA
Orthogonal Frequency Division Multiplexing
Radio frequency
Random access
Resource allocation
Time Division Multiple Access
Uplink
WiFi
Wireless communications
Wireless fidelity
Wireless networks
title Realistic Indoor Hybrid WiFi and OFDMA-Based LiFi Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A43%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Realistic%20Indoor%20Hybrid%20WiFi%20and%20OFDMA-Based%20LiFi%20Networks&rft.jtitle=IEEE%20transactions%20on%20communications&rft.au=Zeng,%20Zhihong&rft.date=2020-05-01&rft.volume=68&rft.issue=5&rft.spage=2978&rft.epage=2991&rft.pages=2978-2991&rft.issn=0090-6778&rft.eissn=1558-0857&rft.coden=IECMBT&rft_id=info:doi/10.1109/TCOMM.2020.2974458&rft_dat=%3Cproquest_RIE%3E2404040360%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2404040360&rft_id=info:pmid/&rft_ieee_id=9000881&rfr_iscdi=true