Hierarchical Aggregation for Reputation Feedback of Services Networks
Product ratings are popular tools to support buying decisions of consumers, which are also valuable for online retailers. In online marketplaces, vendors can use rating systems to build trust and reputation. To build trust, it is really important to evaluate the aggregate score for an item or a serv...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2020, Vol.2020 (2020), p.1-12 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | 2020 |
container_start_page | 1 |
container_title | Mathematical problems in engineering |
container_volume | 2020 |
creator | Yang, Rong Wang, Dianhua |
description | Product ratings are popular tools to support buying decisions of consumers, which are also valuable for online retailers. In online marketplaces, vendors can use rating systems to build trust and reputation. To build trust, it is really important to evaluate the aggregate score for an item or a service. An accurate aggregation of ratings can embody the true quality of offerings, which is not only beneficial for providers in adjusting operation and sales tactics, but also helpful for consumers in discovery and purchase decisions. In this paper, we propose a hierarchical aggregation model for reputation feedback, where the state-of-the-art feature-based matrix factorization models are used. We first present our motivation. Then, we propose feature-based matrix factorization models. Finally, we address how to utilize the above modes to formulate the hierarchical aggregation model. Through a set of experiments, we can get that the aggregate score calculated by our model is greater than the corresponding value obtained by the state-of-the-art IRURe; i.e., the outputs of our models can better match the true rank orders. |
doi_str_mv | 10.1155/2020/3748383 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2403867074</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2403867074</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-f1cf8be85444cef327ef86b42ab76f1842589b0dba829691ef5cc9b5d83cfbf93</originalsourceid><addsrcrecordid>eNqF0E1LAzEQBuAgCtbqzbMseNS1-d7ssZTWCkXBD_C2JOmkTVubmmxb_Pdu2YJHTzMDD_PCi9A1wQ-ECNGjmOIeK7hiip2gDhGS5YLw4rTZMeU5oezzHF2ktMCYEkFUBw3HHqKOdu6tXmX92SzCTNc-rDMXYvYKm23dniOAqdF2mQWXvUHceQspe4Z6H-IyXaIzp1cJro6ziz5Gw_fBOJ-8PD4N-pPcMonr3BHrlAElOOcWHKMFOCUNp9oU0hHFqVClwU2OoqUsCThhbWnEVDHrjCtZF922fzcxfG8h1dUibOO6iawox0zJAhe8UfetsjGkFMFVm-i_dPypCK4ORVWHoqpjUQ2_a_ncr6d67__TN62GxoDTf5qUXLKC_QIcF3Hc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2403867074</pqid></control><display><type>article</type><title>Hierarchical Aggregation for Reputation Feedback of Services Networks</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley-Blackwell Open Access Titles</source><source>Alma/SFX Local Collection</source><creator>Yang, Rong ; Wang, Dianhua</creator><contributor>Chai, Chunlai ; Chunlai Chai</contributor><creatorcontrib>Yang, Rong ; Wang, Dianhua ; Chai, Chunlai ; Chunlai Chai</creatorcontrib><description>Product ratings are popular tools to support buying decisions of consumers, which are also valuable for online retailers. In online marketplaces, vendors can use rating systems to build trust and reputation. To build trust, it is really important to evaluate the aggregate score for an item or a service. An accurate aggregation of ratings can embody the true quality of offerings, which is not only beneficial for providers in adjusting operation and sales tactics, but also helpful for consumers in discovery and purchase decisions. In this paper, we propose a hierarchical aggregation model for reputation feedback, where the state-of-the-art feature-based matrix factorization models are used. We first present our motivation. Then, we propose feature-based matrix factorization models. Finally, we address how to utilize the above modes to formulate the hierarchical aggregation model. Through a set of experiments, we can get that the aggregate score calculated by our model is greater than the corresponding value obtained by the state-of-the-art IRURe; i.e., the outputs of our models can better match the true rank orders.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2020/3748383</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Agglomeration ; Collaboration ; Consumers ; Decision making ; Decisions ; Factorization ; Feedback ; Preferences ; Product reviews ; Ratings ; Ratings & rankings ; Recommender systems ; Reputation management ; Researchers ; Sentiment analysis ; Shopping ; Tactics ; Trustworthiness</subject><ispartof>Mathematical problems in engineering, 2020, Vol.2020 (2020), p.1-12</ispartof><rights>Copyright © 2020 Rong Yang and Dianhua Wang.</rights><rights>Copyright © 2020 Rong Yang and Dianhua Wang. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-f1cf8be85444cef327ef86b42ab76f1842589b0dba829691ef5cc9b5d83cfbf93</citedby><cites>FETCH-LOGICAL-c360t-f1cf8be85444cef327ef86b42ab76f1842589b0dba829691ef5cc9b5d83cfbf93</cites><orcidid>0000-0002-4093-3038 ; 0000-0002-6346-3745</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><contributor>Chai, Chunlai</contributor><contributor>Chunlai Chai</contributor><creatorcontrib>Yang, Rong</creatorcontrib><creatorcontrib>Wang, Dianhua</creatorcontrib><title>Hierarchical Aggregation for Reputation Feedback of Services Networks</title><title>Mathematical problems in engineering</title><description>Product ratings are popular tools to support buying decisions of consumers, which are also valuable for online retailers. In online marketplaces, vendors can use rating systems to build trust and reputation. To build trust, it is really important to evaluate the aggregate score for an item or a service. An accurate aggregation of ratings can embody the true quality of offerings, which is not only beneficial for providers in adjusting operation and sales tactics, but also helpful for consumers in discovery and purchase decisions. In this paper, we propose a hierarchical aggregation model for reputation feedback, where the state-of-the-art feature-based matrix factorization models are used. We first present our motivation. Then, we propose feature-based matrix factorization models. Finally, we address how to utilize the above modes to formulate the hierarchical aggregation model. Through a set of experiments, we can get that the aggregate score calculated by our model is greater than the corresponding value obtained by the state-of-the-art IRURe; i.e., the outputs of our models can better match the true rank orders.</description><subject>Agglomeration</subject><subject>Collaboration</subject><subject>Consumers</subject><subject>Decision making</subject><subject>Decisions</subject><subject>Factorization</subject><subject>Feedback</subject><subject>Preferences</subject><subject>Product reviews</subject><subject>Ratings</subject><subject>Ratings & rankings</subject><subject>Recommender systems</subject><subject>Reputation management</subject><subject>Researchers</subject><subject>Sentiment analysis</subject><subject>Shopping</subject><subject>Tactics</subject><subject>Trustworthiness</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0E1LAzEQBuAgCtbqzbMseNS1-d7ssZTWCkXBD_C2JOmkTVubmmxb_Pdu2YJHTzMDD_PCi9A1wQ-ECNGjmOIeK7hiip2gDhGS5YLw4rTZMeU5oezzHF2ktMCYEkFUBw3HHqKOdu6tXmX92SzCTNc-rDMXYvYKm23dniOAqdF2mQWXvUHceQspe4Z6H-IyXaIzp1cJro6ziz5Gw_fBOJ-8PD4N-pPcMonr3BHrlAElOOcWHKMFOCUNp9oU0hHFqVClwU2OoqUsCThhbWnEVDHrjCtZF922fzcxfG8h1dUibOO6iawox0zJAhe8UfetsjGkFMFVm-i_dPypCK4ORVWHoqpjUQ2_a_ncr6d67__TN62GxoDTf5qUXLKC_QIcF3Hc</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Yang, Rong</creator><creator>Wang, Dianhua</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-4093-3038</orcidid><orcidid>https://orcid.org/0000-0002-6346-3745</orcidid></search><sort><creationdate>2020</creationdate><title>Hierarchical Aggregation for Reputation Feedback of Services Networks</title><author>Yang, Rong ; Wang, Dianhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-f1cf8be85444cef327ef86b42ab76f1842589b0dba829691ef5cc9b5d83cfbf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Agglomeration</topic><topic>Collaboration</topic><topic>Consumers</topic><topic>Decision making</topic><topic>Decisions</topic><topic>Factorization</topic><topic>Feedback</topic><topic>Preferences</topic><topic>Product reviews</topic><topic>Ratings</topic><topic>Ratings & rankings</topic><topic>Recommender systems</topic><topic>Reputation management</topic><topic>Researchers</topic><topic>Sentiment analysis</topic><topic>Shopping</topic><topic>Tactics</topic><topic>Trustworthiness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Rong</creatorcontrib><creatorcontrib>Wang, Dianhua</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Rong</au><au>Wang, Dianhua</au><au>Chai, Chunlai</au><au>Chunlai Chai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hierarchical Aggregation for Reputation Feedback of Services Networks</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>Product ratings are popular tools to support buying decisions of consumers, which are also valuable for online retailers. In online marketplaces, vendors can use rating systems to build trust and reputation. To build trust, it is really important to evaluate the aggregate score for an item or a service. An accurate aggregation of ratings can embody the true quality of offerings, which is not only beneficial for providers in adjusting operation and sales tactics, but also helpful for consumers in discovery and purchase decisions. In this paper, we propose a hierarchical aggregation model for reputation feedback, where the state-of-the-art feature-based matrix factorization models are used. We first present our motivation. Then, we propose feature-based matrix factorization models. Finally, we address how to utilize the above modes to formulate the hierarchical aggregation model. Through a set of experiments, we can get that the aggregate score calculated by our model is greater than the corresponding value obtained by the state-of-the-art IRURe; i.e., the outputs of our models can better match the true rank orders.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/3748383</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4093-3038</orcidid><orcidid>https://orcid.org/0000-0002-6346-3745</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical problems in engineering, 2020, Vol.2020 (2020), p.1-12 |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_proquest_journals_2403867074 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley-Blackwell Open Access Titles; Alma/SFX Local Collection |
subjects | Agglomeration Collaboration Consumers Decision making Decisions Factorization Feedback Preferences Product reviews Ratings Ratings & rankings Recommender systems Reputation management Researchers Sentiment analysis Shopping Tactics Trustworthiness |
title | Hierarchical Aggregation for Reputation Feedback of Services Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A24%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hierarchical%20Aggregation%20for%20Reputation%20Feedback%20of%20Services%20Networks&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Yang,%20Rong&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2020/3748383&rft_dat=%3Cproquest_cross%3E2403867074%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2403867074&rft_id=info:pmid/&rfr_iscdi=true |