Hierarchical Aggregation for Reputation Feedback of Services Networks

Product ratings are popular tools to support buying decisions of consumers, which are also valuable for online retailers. In online marketplaces, vendors can use rating systems to build trust and reputation. To build trust, it is really important to evaluate the aggregate score for an item or a serv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2020, Vol.2020 (2020), p.1-12
Hauptverfasser: Yang, Rong, Wang, Dianhua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 2020
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2020
creator Yang, Rong
Wang, Dianhua
description Product ratings are popular tools to support buying decisions of consumers, which are also valuable for online retailers. In online marketplaces, vendors can use rating systems to build trust and reputation. To build trust, it is really important to evaluate the aggregate score for an item or a service. An accurate aggregation of ratings can embody the true quality of offerings, which is not only beneficial for providers in adjusting operation and sales tactics, but also helpful for consumers in discovery and purchase decisions. In this paper, we propose a hierarchical aggregation model for reputation feedback, where the state-of-the-art feature-based matrix factorization models are used. We first present our motivation. Then, we propose feature-based matrix factorization models. Finally, we address how to utilize the above modes to formulate the hierarchical aggregation model. Through a set of experiments, we can get that the aggregate score calculated by our model is greater than the corresponding value obtained by the state-of-the-art IRURe; i.e., the outputs of our models can better match the true rank orders.
doi_str_mv 10.1155/2020/3748383
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2403867074</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2403867074</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-f1cf8be85444cef327ef86b42ab76f1842589b0dba829691ef5cc9b5d83cfbf93</originalsourceid><addsrcrecordid>eNqF0E1LAzEQBuAgCtbqzbMseNS1-d7ssZTWCkXBD_C2JOmkTVubmmxb_Pdu2YJHTzMDD_PCi9A1wQ-ECNGjmOIeK7hiip2gDhGS5YLw4rTZMeU5oezzHF2ktMCYEkFUBw3HHqKOdu6tXmX92SzCTNc-rDMXYvYKm23dniOAqdF2mQWXvUHceQspe4Z6H-IyXaIzp1cJro6ziz5Gw_fBOJ-8PD4N-pPcMonr3BHrlAElOOcWHKMFOCUNp9oU0hHFqVClwU2OoqUsCThhbWnEVDHrjCtZF922fzcxfG8h1dUibOO6iawox0zJAhe8UfetsjGkFMFVm-i_dPypCK4ORVWHoqpjUQ2_a_ncr6d67__TN62GxoDTf5qUXLKC_QIcF3Hc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2403867074</pqid></control><display><type>article</type><title>Hierarchical Aggregation for Reputation Feedback of Services Networks</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley-Blackwell Open Access Titles</source><source>Alma/SFX Local Collection</source><creator>Yang, Rong ; Wang, Dianhua</creator><contributor>Chai, Chunlai ; Chunlai Chai</contributor><creatorcontrib>Yang, Rong ; Wang, Dianhua ; Chai, Chunlai ; Chunlai Chai</creatorcontrib><description>Product ratings are popular tools to support buying decisions of consumers, which are also valuable for online retailers. In online marketplaces, vendors can use rating systems to build trust and reputation. To build trust, it is really important to evaluate the aggregate score for an item or a service. An accurate aggregation of ratings can embody the true quality of offerings, which is not only beneficial for providers in adjusting operation and sales tactics, but also helpful for consumers in discovery and purchase decisions. In this paper, we propose a hierarchical aggregation model for reputation feedback, where the state-of-the-art feature-based matrix factorization models are used. We first present our motivation. Then, we propose feature-based matrix factorization models. Finally, we address how to utilize the above modes to formulate the hierarchical aggregation model. Through a set of experiments, we can get that the aggregate score calculated by our model is greater than the corresponding value obtained by the state-of-the-art IRURe; i.e., the outputs of our models can better match the true rank orders.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2020/3748383</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Agglomeration ; Collaboration ; Consumers ; Decision making ; Decisions ; Factorization ; Feedback ; Preferences ; Product reviews ; Ratings ; Ratings &amp; rankings ; Recommender systems ; Reputation management ; Researchers ; Sentiment analysis ; Shopping ; Tactics ; Trustworthiness</subject><ispartof>Mathematical problems in engineering, 2020, Vol.2020 (2020), p.1-12</ispartof><rights>Copyright © 2020 Rong Yang and Dianhua Wang.</rights><rights>Copyright © 2020 Rong Yang and Dianhua Wang. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-f1cf8be85444cef327ef86b42ab76f1842589b0dba829691ef5cc9b5d83cfbf93</citedby><cites>FETCH-LOGICAL-c360t-f1cf8be85444cef327ef86b42ab76f1842589b0dba829691ef5cc9b5d83cfbf93</cites><orcidid>0000-0002-4093-3038 ; 0000-0002-6346-3745</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><contributor>Chai, Chunlai</contributor><contributor>Chunlai Chai</contributor><creatorcontrib>Yang, Rong</creatorcontrib><creatorcontrib>Wang, Dianhua</creatorcontrib><title>Hierarchical Aggregation for Reputation Feedback of Services Networks</title><title>Mathematical problems in engineering</title><description>Product ratings are popular tools to support buying decisions of consumers, which are also valuable for online retailers. In online marketplaces, vendors can use rating systems to build trust and reputation. To build trust, it is really important to evaluate the aggregate score for an item or a service. An accurate aggregation of ratings can embody the true quality of offerings, which is not only beneficial for providers in adjusting operation and sales tactics, but also helpful for consumers in discovery and purchase decisions. In this paper, we propose a hierarchical aggregation model for reputation feedback, where the state-of-the-art feature-based matrix factorization models are used. We first present our motivation. Then, we propose feature-based matrix factorization models. Finally, we address how to utilize the above modes to formulate the hierarchical aggregation model. Through a set of experiments, we can get that the aggregate score calculated by our model is greater than the corresponding value obtained by the state-of-the-art IRURe; i.e., the outputs of our models can better match the true rank orders.</description><subject>Agglomeration</subject><subject>Collaboration</subject><subject>Consumers</subject><subject>Decision making</subject><subject>Decisions</subject><subject>Factorization</subject><subject>Feedback</subject><subject>Preferences</subject><subject>Product reviews</subject><subject>Ratings</subject><subject>Ratings &amp; rankings</subject><subject>Recommender systems</subject><subject>Reputation management</subject><subject>Researchers</subject><subject>Sentiment analysis</subject><subject>Shopping</subject><subject>Tactics</subject><subject>Trustworthiness</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0E1LAzEQBuAgCtbqzbMseNS1-d7ssZTWCkXBD_C2JOmkTVubmmxb_Pdu2YJHTzMDD_PCi9A1wQ-ECNGjmOIeK7hiip2gDhGS5YLw4rTZMeU5oezzHF2ktMCYEkFUBw3HHqKOdu6tXmX92SzCTNc-rDMXYvYKm23dniOAqdF2mQWXvUHceQspe4Z6H-IyXaIzp1cJro6ziz5Gw_fBOJ-8PD4N-pPcMonr3BHrlAElOOcWHKMFOCUNp9oU0hHFqVClwU2OoqUsCThhbWnEVDHrjCtZF922fzcxfG8h1dUibOO6iawox0zJAhe8UfetsjGkFMFVm-i_dPypCK4ORVWHoqpjUQ2_a_ncr6d67__TN62GxoDTf5qUXLKC_QIcF3Hc</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Yang, Rong</creator><creator>Wang, Dianhua</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-4093-3038</orcidid><orcidid>https://orcid.org/0000-0002-6346-3745</orcidid></search><sort><creationdate>2020</creationdate><title>Hierarchical Aggregation for Reputation Feedback of Services Networks</title><author>Yang, Rong ; Wang, Dianhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-f1cf8be85444cef327ef86b42ab76f1842589b0dba829691ef5cc9b5d83cfbf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Agglomeration</topic><topic>Collaboration</topic><topic>Consumers</topic><topic>Decision making</topic><topic>Decisions</topic><topic>Factorization</topic><topic>Feedback</topic><topic>Preferences</topic><topic>Product reviews</topic><topic>Ratings</topic><topic>Ratings &amp; rankings</topic><topic>Recommender systems</topic><topic>Reputation management</topic><topic>Researchers</topic><topic>Sentiment analysis</topic><topic>Shopping</topic><topic>Tactics</topic><topic>Trustworthiness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Rong</creatorcontrib><creatorcontrib>Wang, Dianhua</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Rong</au><au>Wang, Dianhua</au><au>Chai, Chunlai</au><au>Chunlai Chai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hierarchical Aggregation for Reputation Feedback of Services Networks</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>Product ratings are popular tools to support buying decisions of consumers, which are also valuable for online retailers. In online marketplaces, vendors can use rating systems to build trust and reputation. To build trust, it is really important to evaluate the aggregate score for an item or a service. An accurate aggregation of ratings can embody the true quality of offerings, which is not only beneficial for providers in adjusting operation and sales tactics, but also helpful for consumers in discovery and purchase decisions. In this paper, we propose a hierarchical aggregation model for reputation feedback, where the state-of-the-art feature-based matrix factorization models are used. We first present our motivation. Then, we propose feature-based matrix factorization models. Finally, we address how to utilize the above modes to formulate the hierarchical aggregation model. Through a set of experiments, we can get that the aggregate score calculated by our model is greater than the corresponding value obtained by the state-of-the-art IRURe; i.e., the outputs of our models can better match the true rank orders.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/3748383</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4093-3038</orcidid><orcidid>https://orcid.org/0000-0002-6346-3745</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2020, Vol.2020 (2020), p.1-12
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_journals_2403867074
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley-Blackwell Open Access Titles; Alma/SFX Local Collection
subjects Agglomeration
Collaboration
Consumers
Decision making
Decisions
Factorization
Feedback
Preferences
Product reviews
Ratings
Ratings & rankings
Recommender systems
Reputation management
Researchers
Sentiment analysis
Shopping
Tactics
Trustworthiness
title Hierarchical Aggregation for Reputation Feedback of Services Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A24%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hierarchical%20Aggregation%20for%20Reputation%20Feedback%20of%20Services%20Networks&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Yang,%20Rong&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2020/3748383&rft_dat=%3Cproquest_cross%3E2403867074%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2403867074&rft_id=info:pmid/&rfr_iscdi=true