Role of Cluster Validity Indices in Delineation of Precipitation Regions
The delineation of precipitation regions is to identify homogeneous zones in which the characteristics of the process are statistically similar. The regionalization process has three main components: (i) delineation of regions using clustering algorithms, (ii) determining the optimal number of regio...
Gespeichert in:
Veröffentlicht in: | Water (Basel) 2020-05, Vol.12 (5), p.1372 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | 1372 |
container_title | Water (Basel) |
container_volume | 12 |
creator | Bhatia, Nikhil Sojan, Jency M. Simonovic, Slobodon Srivastav, Roshan |
description | The delineation of precipitation regions is to identify homogeneous zones in which the characteristics of the process are statistically similar. The regionalization process has three main components: (i) delineation of regions using clustering algorithms, (ii) determining the optimal number of regions using cluster validity indices (CVIs), and (iii) validation of regions for homogeneity using L-moments ratio test. The identification of the optimal number of clusters will significantly affect the homogeneity of the regions. The objective of this study is to investigate the performance of the various CVIs in identifying the optimal number of clusters, which maximizes the homogeneity of the precipitation regions. The k-means clustering algorithm is adopted to delineate the regions using location-based attributes for two large areas from Canada, namely, the Prairies and the Great Lakes-St Lawrence lowlands (GL-SL) region. The seasonal precipitation data for 55 years (1951–2005) is derived using high-resolution ANUSPLIN gridded point data for Canada. The results indicate that the optimal number of clusters and the regional homogeneity depends on the CVI adopted. Among 42 cluster indices considered, 15 of them outperform in identifying the homogeneous precipitation regions. The Dunn, D e t _ r a t i o and Trace( W − 1 B ) indices found to be the best for all seasons in both the regions. |
doi_str_mv | 10.3390/w12051372 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2403824918</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A632502124</galeid><sourcerecordid>A632502124</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-3df31985e40d6f189cd567efe53c8961388e4f65d802feda90d874bd3e8a2fb3</originalsourceid><addsrcrecordid>eNpNUMtqwzAQFKWFhjSH_oGhpx6cSlrZlo4hfSQQaAmhV6NIq6DgWKnkUPL3dXAp3T3MMszMwhByz-gUQNGnb8ZpwaDiV2TEaQW5EIJd_7tvySSlPe1HKCkLOiKLdWgwCy6bN6fUYcw-deOt787ZsrXeYMp8mz1j41vUnQ_tRfoR0fij7wZijbse0h25cbpJOPnFMdm8vmzmi3z1_racz1a5AWBdDtYBU7JAQW3pmFTGFmWFDgswUpUMpEThysJKyh1araiVldhaQKm528KYPAyxxxi-Tpi6eh9Ose0_1lxQkFwoJnvVdFDtdIO1b13oojb9Wjx4E1p0vudnJfCCcsZFb3gcDCaGlCK6-hj9QcdzzWh96bb-6xZ-APliaiI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2403824918</pqid></control><display><type>article</type><title>Role of Cluster Validity Indices in Delineation of Precipitation Regions</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Bhatia, Nikhil ; Sojan, Jency M. ; Simonovic, Slobodon ; Srivastav, Roshan</creator><creatorcontrib>Bhatia, Nikhil ; Sojan, Jency M. ; Simonovic, Slobodon ; Srivastav, Roshan</creatorcontrib><description>The delineation of precipitation regions is to identify homogeneous zones in which the characteristics of the process are statistically similar. The regionalization process has three main components: (i) delineation of regions using clustering algorithms, (ii) determining the optimal number of regions using cluster validity indices (CVIs), and (iii) validation of regions for homogeneity using L-moments ratio test. The identification of the optimal number of clusters will significantly affect the homogeneity of the regions. The objective of this study is to investigate the performance of the various CVIs in identifying the optimal number of clusters, which maximizes the homogeneity of the precipitation regions. The k-means clustering algorithm is adopted to delineate the regions using location-based attributes for two large areas from Canada, namely, the Prairies and the Great Lakes-St Lawrence lowlands (GL-SL) region. The seasonal precipitation data for 55 years (1951–2005) is derived using high-resolution ANUSPLIN gridded point data for Canada. The results indicate that the optimal number of clusters and the regional homogeneity depends on the CVI adopted. Among 42 cluster indices considered, 15 of them outperform in identifying the homogeneous precipitation regions. The Dunn, D e t _ r a t i o and Trace( W − 1 B ) indices found to be the best for all seasons in both the regions.</description><identifier>ISSN: 2073-4441</identifier><identifier>EISSN: 2073-4441</identifier><identifier>DOI: 10.3390/w12051372</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Analysis ; Cluster analysis ; Clustering ; Datasets ; Delineation ; Environmental aspects ; Homogeneity ; Hydrologic data ; Influence ; Lowlands ; Performance evaluation ; Prairies ; Precipitation ; Precipitation variability ; Seasonal variations ; Statistics ; Studies ; Technology application ; Validity</subject><ispartof>Water (Basel), 2020-05, Vol.12 (5), p.1372</ispartof><rights>COPYRIGHT 2020 MDPI AG</rights><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-3df31985e40d6f189cd567efe53c8961388e4f65d802feda90d874bd3e8a2fb3</citedby><cites>FETCH-LOGICAL-c331t-3df31985e40d6f189cd567efe53c8961388e4f65d802feda90d874bd3e8a2fb3</cites><orcidid>0000-0001-5072-2915 ; 0000-0002-8175-8969 ; 0000-0002-8411-5782</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Bhatia, Nikhil</creatorcontrib><creatorcontrib>Sojan, Jency M.</creatorcontrib><creatorcontrib>Simonovic, Slobodon</creatorcontrib><creatorcontrib>Srivastav, Roshan</creatorcontrib><title>Role of Cluster Validity Indices in Delineation of Precipitation Regions</title><title>Water (Basel)</title><description>The delineation of precipitation regions is to identify homogeneous zones in which the characteristics of the process are statistically similar. The regionalization process has three main components: (i) delineation of regions using clustering algorithms, (ii) determining the optimal number of regions using cluster validity indices (CVIs), and (iii) validation of regions for homogeneity using L-moments ratio test. The identification of the optimal number of clusters will significantly affect the homogeneity of the regions. The objective of this study is to investigate the performance of the various CVIs in identifying the optimal number of clusters, which maximizes the homogeneity of the precipitation regions. The k-means clustering algorithm is adopted to delineate the regions using location-based attributes for two large areas from Canada, namely, the Prairies and the Great Lakes-St Lawrence lowlands (GL-SL) region. The seasonal precipitation data for 55 years (1951–2005) is derived using high-resolution ANUSPLIN gridded point data for Canada. The results indicate that the optimal number of clusters and the regional homogeneity depends on the CVI adopted. Among 42 cluster indices considered, 15 of them outperform in identifying the homogeneous precipitation regions. The Dunn, D e t _ r a t i o and Trace( W − 1 B ) indices found to be the best for all seasons in both the regions.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Datasets</subject><subject>Delineation</subject><subject>Environmental aspects</subject><subject>Homogeneity</subject><subject>Hydrologic data</subject><subject>Influence</subject><subject>Lowlands</subject><subject>Performance evaluation</subject><subject>Prairies</subject><subject>Precipitation</subject><subject>Precipitation variability</subject><subject>Seasonal variations</subject><subject>Statistics</subject><subject>Studies</subject><subject>Technology application</subject><subject>Validity</subject><issn>2073-4441</issn><issn>2073-4441</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNUMtqwzAQFKWFhjSH_oGhpx6cSlrZlo4hfSQQaAmhV6NIq6DgWKnkUPL3dXAp3T3MMszMwhByz-gUQNGnb8ZpwaDiV2TEaQW5EIJd_7tvySSlPe1HKCkLOiKLdWgwCy6bN6fUYcw-deOt787ZsrXeYMp8mz1j41vUnQ_tRfoR0fij7wZijbse0h25cbpJOPnFMdm8vmzmi3z1_racz1a5AWBdDtYBU7JAQW3pmFTGFmWFDgswUpUMpEThysJKyh1araiVldhaQKm528KYPAyxxxi-Tpi6eh9Ose0_1lxQkFwoJnvVdFDtdIO1b13oojb9Wjx4E1p0vudnJfCCcsZFb3gcDCaGlCK6-hj9QcdzzWh96bb-6xZ-APliaiI</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Bhatia, Nikhil</creator><creator>Sojan, Jency M.</creator><creator>Simonovic, Slobodon</creator><creator>Srivastav, Roshan</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-5072-2915</orcidid><orcidid>https://orcid.org/0000-0002-8175-8969</orcidid><orcidid>https://orcid.org/0000-0002-8411-5782</orcidid></search><sort><creationdate>20200501</creationdate><title>Role of Cluster Validity Indices in Delineation of Precipitation Regions</title><author>Bhatia, Nikhil ; Sojan, Jency M. ; Simonovic, Slobodon ; Srivastav, Roshan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-3df31985e40d6f189cd567efe53c8961388e4f65d802feda90d874bd3e8a2fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Datasets</topic><topic>Delineation</topic><topic>Environmental aspects</topic><topic>Homogeneity</topic><topic>Hydrologic data</topic><topic>Influence</topic><topic>Lowlands</topic><topic>Performance evaluation</topic><topic>Prairies</topic><topic>Precipitation</topic><topic>Precipitation variability</topic><topic>Seasonal variations</topic><topic>Statistics</topic><topic>Studies</topic><topic>Technology application</topic><topic>Validity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhatia, Nikhil</creatorcontrib><creatorcontrib>Sojan, Jency M.</creatorcontrib><creatorcontrib>Simonovic, Slobodon</creatorcontrib><creatorcontrib>Srivastav, Roshan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Water (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhatia, Nikhil</au><au>Sojan, Jency M.</au><au>Simonovic, Slobodon</au><au>Srivastav, Roshan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of Cluster Validity Indices in Delineation of Precipitation Regions</atitle><jtitle>Water (Basel)</jtitle><date>2020-05-01</date><risdate>2020</risdate><volume>12</volume><issue>5</issue><spage>1372</spage><pages>1372-</pages><issn>2073-4441</issn><eissn>2073-4441</eissn><abstract>The delineation of precipitation regions is to identify homogeneous zones in which the characteristics of the process are statistically similar. The regionalization process has three main components: (i) delineation of regions using clustering algorithms, (ii) determining the optimal number of regions using cluster validity indices (CVIs), and (iii) validation of regions for homogeneity using L-moments ratio test. The identification of the optimal number of clusters will significantly affect the homogeneity of the regions. The objective of this study is to investigate the performance of the various CVIs in identifying the optimal number of clusters, which maximizes the homogeneity of the precipitation regions. The k-means clustering algorithm is adopted to delineate the regions using location-based attributes for two large areas from Canada, namely, the Prairies and the Great Lakes-St Lawrence lowlands (GL-SL) region. The seasonal precipitation data for 55 years (1951–2005) is derived using high-resolution ANUSPLIN gridded point data for Canada. The results indicate that the optimal number of clusters and the regional homogeneity depends on the CVI adopted. Among 42 cluster indices considered, 15 of them outperform in identifying the homogeneous precipitation regions. The Dunn, D e t _ r a t i o and Trace( W − 1 B ) indices found to be the best for all seasons in both the regions.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/w12051372</doi><orcidid>https://orcid.org/0000-0001-5072-2915</orcidid><orcidid>https://orcid.org/0000-0002-8175-8969</orcidid><orcidid>https://orcid.org/0000-0002-8411-5782</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4441 |
ispartof | Water (Basel), 2020-05, Vol.12 (5), p.1372 |
issn | 2073-4441 2073-4441 |
language | eng |
recordid | cdi_proquest_journals_2403824918 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Analysis Cluster analysis Clustering Datasets Delineation Environmental aspects Homogeneity Hydrologic data Influence Lowlands Performance evaluation Prairies Precipitation Precipitation variability Seasonal variations Statistics Studies Technology application Validity |
title | Role of Cluster Validity Indices in Delineation of Precipitation Regions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T09%3A20%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20Cluster%20Validity%20Indices%20in%20Delineation%20of%20Precipitation%20Regions&rft.jtitle=Water%20(Basel)&rft.au=Bhatia,%20Nikhil&rft.date=2020-05-01&rft.volume=12&rft.issue=5&rft.spage=1372&rft.pages=1372-&rft.issn=2073-4441&rft.eissn=2073-4441&rft_id=info:doi/10.3390/w12051372&rft_dat=%3Cgale_proqu%3EA632502124%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2403824918&rft_id=info:pmid/&rft_galeid=A632502124&rfr_iscdi=true |