On Spanning Trees without Vertices of Degree 2 in Plane Triangulations

Let G be a 2-connected plane graph such that at most one of its faces is not a triangle. It is proved that G has a spanning tree without vertices of degree 2. Bibliography: 3 titles.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2020-06, Vol.247 (3), p.438-441
1. Verfasser: Karpov, D. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 441
container_issue 3
container_start_page 438
container_title Journal of mathematical sciences (New York, N.Y.)
container_volume 247
creator Karpov, D. V.
description Let G be a 2-connected plane graph such that at most one of its faces is not a triangle. It is proved that G has a spanning tree without vertices of degree 2. Bibliography: 3 titles.
doi_str_mv 10.1007/s10958-020-04811-3
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2403315313</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A630406572</galeid><sourcerecordid>A630406572</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3243-4e5b18b948753609e75b963b78a304b5837c727189cf42e69d702ed6a20bd04f3</originalsourceid><addsrcrecordid>eNp9kVFLHDEQx5eiUGv7Bfq00Kc-RCeZZJN9FFutIJxU7WvI7s1uI3vZa7KL-u2b8wQ5OCQPCZPfb4bkXxRfOZxwAH2aONTKMBDAQBrOGX4ojrjSyIyu1UE-gxYMUcuPxaeUHiBLlcGj4mIRytu1C8GHvryLRKl89NPfcZ7KPxQn3-bC2JU_qM93pSh9KG8GFyiz3oV-Htzkx5A-F4edGxJ9ed2Pi_uLn3fnv9j14vLq_OyatSgkMkmq4aappdEKK6hJq6ausNHGIchGGdStFpqbuu2koKpeahC0rJyAZgmyw-Pi27bvOo7_ZkqTfRjnGPJIKyQgcoUc36jeDWR96MYpunblU2vPqjwIKqVFptgeqqdA0Q1joM7n8g5_sofPa0kr3-4Vvu8ImZnoaerdnJK9uv29y4ot28YxpUidXUe_cvHZcrCbiO02Ypsjti8R2807cSulDIee4ttvvGP9B5Axo6I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2403315313</pqid></control><display><type>article</type><title>On Spanning Trees without Vertices of Degree 2 in Plane Triangulations</title><source>SpringerNature Journals</source><creator>Karpov, D. V.</creator><creatorcontrib>Karpov, D. V.</creatorcontrib><description>Let G be a 2-connected plane graph such that at most one of its faces is not a triangle. It is proved that G has a spanning tree without vertices of degree 2. Bibliography: 3 titles.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-020-04811-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Apexes ; Graph theory ; Mathematics ; Mathematics and Statistics</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2020-06, Vol.247 (3), p.438-441</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3243-4e5b18b948753609e75b963b78a304b5837c727189cf42e69d702ed6a20bd04f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10958-020-04811-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10958-020-04811-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Karpov, D. V.</creatorcontrib><title>On Spanning Trees without Vertices of Degree 2 in Plane Triangulations</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>Let G be a 2-connected plane graph such that at most one of its faces is not a triangle. It is proved that G has a spanning tree without vertices of degree 2. Bibliography: 3 titles.</description><subject>Apexes</subject><subject>Graph theory</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kVFLHDEQx5eiUGv7Bfq00Kc-RCeZZJN9FFutIJxU7WvI7s1uI3vZa7KL-u2b8wQ5OCQPCZPfb4bkXxRfOZxwAH2aONTKMBDAQBrOGX4ojrjSyIyu1UE-gxYMUcuPxaeUHiBLlcGj4mIRytu1C8GHvryLRKl89NPfcZ7KPxQn3-bC2JU_qM93pSh9KG8GFyiz3oV-Htzkx5A-F4edGxJ9ed2Pi_uLn3fnv9j14vLq_OyatSgkMkmq4aappdEKK6hJq6ausNHGIchGGdStFpqbuu2koKpeahC0rJyAZgmyw-Pi27bvOo7_ZkqTfRjnGPJIKyQgcoUc36jeDWR96MYpunblU2vPqjwIKqVFptgeqqdA0Q1joM7n8g5_sofPa0kr3-4Vvu8ImZnoaerdnJK9uv29y4ot28YxpUidXUe_cvHZcrCbiO02Ypsjti8R2807cSulDIee4ttvvGP9B5Axo6I</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Karpov, D. V.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20200601</creationdate><title>On Spanning Trees without Vertices of Degree 2 in Plane Triangulations</title><author>Karpov, D. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3243-4e5b18b948753609e75b963b78a304b5837c727189cf42e69d702ed6a20bd04f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Apexes</topic><topic>Graph theory</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karpov, D. V.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karpov, D. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Spanning Trees without Vertices of Degree 2 in Plane Triangulations</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>247</volume><issue>3</issue><spage>438</spage><epage>441</epage><pages>438-441</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>Let G be a 2-connected plane graph such that at most one of its faces is not a triangle. It is proved that G has a spanning tree without vertices of degree 2. Bibliography: 3 titles.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10958-020-04811-3</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1072-3374
ispartof Journal of mathematical sciences (New York, N.Y.), 2020-06, Vol.247 (3), p.438-441
issn 1072-3374
1573-8795
language eng
recordid cdi_proquest_journals_2403315313
source SpringerNature Journals
subjects Apexes
Graph theory
Mathematics
Mathematics and Statistics
title On Spanning Trees without Vertices of Degree 2 in Plane Triangulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T02%3A57%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Spanning%20Trees%20without%20Vertices%20of%20Degree%202%20in%20Plane%20Triangulations&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Karpov,%20D.%20V.&rft.date=2020-06-01&rft.volume=247&rft.issue=3&rft.spage=438&rft.epage=441&rft.pages=438-441&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-020-04811-3&rft_dat=%3Cgale_proqu%3EA630406572%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2403315313&rft_id=info:pmid/&rft_galeid=A630406572&rfr_iscdi=true