On Spanning Trees without Vertices of Degree 2 in Plane Triangulations
Let G be a 2-connected plane graph such that at most one of its faces is not a triangle. It is proved that G has a spanning tree without vertices of degree 2. Bibliography: 3 titles.
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2020-06, Vol.247 (3), p.438-441 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let G be a 2-connected plane graph such that at most one of its faces is not a triangle. It is proved that G has a spanning tree without vertices of degree 2. Bibliography: 3 titles. |
---|---|
ISSN: | 1072-3374 1573-8795 |
DOI: | 10.1007/s10958-020-04811-3 |