On the Structure of a 3-Connected Graph. 2

In this paper, the structure of relative disposition of 3-vertex cutsets in a 3-connected graph is studied. All such cutsets are divided into structural units – complexes of flowers, of cuts, of single cutsets, and trivial complexes. The decomposition of the graph by a complex of each type is descri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2020-06, Vol.247 (3), p.406-437
1. Verfasser: Karpov, D. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, the structure of relative disposition of 3-vertex cutsets in a 3-connected graph is studied. All such cutsets are divided into structural units – complexes of flowers, of cuts, of single cutsets, and trivial complexes. The decomposition of the graph by a complex of each type is described in detail. It is proved that for any two complexes C 1 and C 2 of a 3-connected graph G there is a unique part of the decomposition of G by C 1 that contains C 2 . The relative disposition of complexes is described with the help of a hypertree T (G) – a hypergraph any cycle of which is a subset of a certain hyperedge. It is also proved that each nonempty part of the decomposition of G by the set of all of its 3-vertex cutsets is either a part of the decomposition of G by one of the complexes or corresponds to a hyperedge of T (G). This paper can be considered as a continuation of studies begun in the joint paper by D. V. Karpov and A. V. Pastor “On the structure of a 3-connected graph,” published in 2011. Bibliography: 10 titles.
ISSN:1072-3374
1573-8795
DOI:10.1007/s10958-020-04810-4