Effects of Supercritical CO2 Treatment Temperatures on Mineral Composition, Pore Structure and Functional Groups of Shale: Implications for CO2 Sequestration
Research on the physicochemical reactions between supercritical carbon dioxide (Sc-CO2) and shale at different temperature is essential for geological CO2 sequestration. In this paper, shale from the Longmaxi formation in Sichuan basin of China was collected to study the changes in mineral compositi...
Gespeichert in:
Veröffentlicht in: | Sustainability 2020-05, Vol.12 (9), p.3927 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | 3927 |
container_title | Sustainability |
container_volume | 12 |
creator | Cheng, Yugang Zeng, Mengru Lu, Zhaohui Du, Xidong Yin, Hong Yang, Liu |
description | Research on the physicochemical reactions between supercritical carbon dioxide (Sc-CO2) and shale at different temperature is essential for geological CO2 sequestration. In this paper, shale from the Longmaxi formation in Sichuan basin of China was collected to study the changes in mineral composition, pore structure, and organic functional groups treated with Sc-CO2 at fixed pressure 8 MPa and temperatures 40 °C to 80 °C. Samples were analyzed with x-ray diffraction, CO2/N2 gas adsorption, and Fourier transform infrared spectroscopy. The results show that the dissolution of clay minerals by Sc-CO2 first declined, but then increased when the temperature increased; dissolution reached a minimum at 60 °C. The specific surface area, total pore volume, predominant pore type (mesopores), and fractal dimension of the shale pore structure first increases and then decreases with increasing temperature. The destruction of hydroxyl structures by Sc-CO2 is related to the destruction of OH–N and ring hydroxyls. As the temperature increases, the hydroxyl destruction first increases and then decreases. The aromatic hydrocarbons are mainly dominated by 3H and 2H, and their abundances increase significantly as temperature increases, whereas the 4H shows a decreasing trend; the 1H abundance does not change appreciably. The relative abundances of aromatic and aliphatic hydrocarbons decrease linearly as the temperature increases. These research results provide theoretical support for the geological storage of Sc-CO2 in shale at different temperatures. |
doi_str_mv | 10.3390/su12093927 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2403314450</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2403314450</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-da71a521c56a4d77ee48d4a99172e0b7a7230cbc99e935bcf55b01c961231b833</originalsourceid><addsrcrecordid>eNpNkU1LAzEQhoMoWLQXf0HAm7iaj03TeJPS1kKlQut5yWZncUt3s-bj4I_xv5ptBZ1LZvI-M2_IIHRDyQPnijz6SBlRXDF5hkaMSJpRIsj5v_wSjb3fkxScU0UnI_Q9r2swwWNb423swRnXhMboA55tGN450KGFLuAdtEnUITpIbIdfmy6VibJtb31qsd09frMO8Da4aAYO667Ci9iZQUzo0tnYn4w-9AGe8KrtD8lqkD2urTtabuEzgg_ueH2NLmp98DD-Pa_Q-2K-m71k681yNXteZ4YpEbJKS6oFo0ZMdF5JCZBPq1wrRSUDUkotGSemNEqB4qI0tRAloUZNKOO0nHJ-hW5Pc3tnj_bF3kaXHu0Llg9_leeCJOruRBlnvXdQF71rWu2-CkqKYQPF3wb4D-wnej8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2403314450</pqid></control><display><type>article</type><title>Effects of Supercritical CO2 Treatment Temperatures on Mineral Composition, Pore Structure and Functional Groups of Shale: Implications for CO2 Sequestration</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Cheng, Yugang ; Zeng, Mengru ; Lu, Zhaohui ; Du, Xidong ; Yin, Hong ; Yang, Liu</creator><creatorcontrib>Cheng, Yugang ; Zeng, Mengru ; Lu, Zhaohui ; Du, Xidong ; Yin, Hong ; Yang, Liu</creatorcontrib><description>Research on the physicochemical reactions between supercritical carbon dioxide (Sc-CO2) and shale at different temperature is essential for geological CO2 sequestration. In this paper, shale from the Longmaxi formation in Sichuan basin of China was collected to study the changes in mineral composition, pore structure, and organic functional groups treated with Sc-CO2 at fixed pressure 8 MPa and temperatures 40 °C to 80 °C. Samples were analyzed with x-ray diffraction, CO2/N2 gas adsorption, and Fourier transform infrared spectroscopy. The results show that the dissolution of clay minerals by Sc-CO2 first declined, but then increased when the temperature increased; dissolution reached a minimum at 60 °C. The specific surface area, total pore volume, predominant pore type (mesopores), and fractal dimension of the shale pore structure first increases and then decreases with increasing temperature. The destruction of hydroxyl structures by Sc-CO2 is related to the destruction of OH–N and ring hydroxyls. As the temperature increases, the hydroxyl destruction first increases and then decreases. The aromatic hydrocarbons are mainly dominated by 3H and 2H, and their abundances increase significantly as temperature increases, whereas the 4H shows a decreasing trend; the 1H abundance does not change appreciably. The relative abundances of aromatic and aliphatic hydrocarbons decrease linearly as the temperature increases. These research results provide theoretical support for the geological storage of Sc-CO2 in shale at different temperatures.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su12093927</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Abundance ; Adsorption ; Aliphatic hydrocarbons ; Aromatic hydrocarbons ; Carbon dioxide ; Clay minerals ; Composition ; Destruction ; Dissolution ; Energy consumption ; Energy industry ; Fourier transforms ; Fractal geometry ; Functional groups ; Geology ; Hydraulic fracturing ; Hydrocarbons ; Infrared spectroscopy ; Mineral composition ; Mineral reserves ; Minerals ; Natural gas reserves ; Permeability ; Porosity ; Research methodology ; Researchers ; Shale ; Temperature ; X-ray diffraction</subject><ispartof>Sustainability, 2020-05, Vol.12 (9), p.3927</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-da71a521c56a4d77ee48d4a99172e0b7a7230cbc99e935bcf55b01c961231b833</citedby><cites>FETCH-LOGICAL-c295t-da71a521c56a4d77ee48d4a99172e0b7a7230cbc99e935bcf55b01c961231b833</cites><orcidid>0000-0002-6353-1939</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Cheng, Yugang</creatorcontrib><creatorcontrib>Zeng, Mengru</creatorcontrib><creatorcontrib>Lu, Zhaohui</creatorcontrib><creatorcontrib>Du, Xidong</creatorcontrib><creatorcontrib>Yin, Hong</creatorcontrib><creatorcontrib>Yang, Liu</creatorcontrib><title>Effects of Supercritical CO2 Treatment Temperatures on Mineral Composition, Pore Structure and Functional Groups of Shale: Implications for CO2 Sequestration</title><title>Sustainability</title><description>Research on the physicochemical reactions between supercritical carbon dioxide (Sc-CO2) and shale at different temperature is essential for geological CO2 sequestration. In this paper, shale from the Longmaxi formation in Sichuan basin of China was collected to study the changes in mineral composition, pore structure, and organic functional groups treated with Sc-CO2 at fixed pressure 8 MPa and temperatures 40 °C to 80 °C. Samples were analyzed with x-ray diffraction, CO2/N2 gas adsorption, and Fourier transform infrared spectroscopy. The results show that the dissolution of clay minerals by Sc-CO2 first declined, but then increased when the temperature increased; dissolution reached a minimum at 60 °C. The specific surface area, total pore volume, predominant pore type (mesopores), and fractal dimension of the shale pore structure first increases and then decreases with increasing temperature. The destruction of hydroxyl structures by Sc-CO2 is related to the destruction of OH–N and ring hydroxyls. As the temperature increases, the hydroxyl destruction first increases and then decreases. The aromatic hydrocarbons are mainly dominated by 3H and 2H, and their abundances increase significantly as temperature increases, whereas the 4H shows a decreasing trend; the 1H abundance does not change appreciably. The relative abundances of aromatic and aliphatic hydrocarbons decrease linearly as the temperature increases. These research results provide theoretical support for the geological storage of Sc-CO2 in shale at different temperatures.</description><subject>Abundance</subject><subject>Adsorption</subject><subject>Aliphatic hydrocarbons</subject><subject>Aromatic hydrocarbons</subject><subject>Carbon dioxide</subject><subject>Clay minerals</subject><subject>Composition</subject><subject>Destruction</subject><subject>Dissolution</subject><subject>Energy consumption</subject><subject>Energy industry</subject><subject>Fourier transforms</subject><subject>Fractal geometry</subject><subject>Functional groups</subject><subject>Geology</subject><subject>Hydraulic fracturing</subject><subject>Hydrocarbons</subject><subject>Infrared spectroscopy</subject><subject>Mineral composition</subject><subject>Mineral reserves</subject><subject>Minerals</subject><subject>Natural gas reserves</subject><subject>Permeability</subject><subject>Porosity</subject><subject>Research methodology</subject><subject>Researchers</subject><subject>Shale</subject><subject>Temperature</subject><subject>X-ray diffraction</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNkU1LAzEQhoMoWLQXf0HAm7iaj03TeJPS1kKlQut5yWZncUt3s-bj4I_xv5ptBZ1LZvI-M2_IIHRDyQPnijz6SBlRXDF5hkaMSJpRIsj5v_wSjb3fkxScU0UnI_Q9r2swwWNb423swRnXhMboA55tGN450KGFLuAdtEnUITpIbIdfmy6VibJtb31qsd09frMO8Da4aAYO667Ci9iZQUzo0tnYn4w-9AGe8KrtD8lqkD2urTtabuEzgg_ueH2NLmp98DD-Pa_Q-2K-m71k681yNXteZ4YpEbJKS6oFo0ZMdF5JCZBPq1wrRSUDUkotGSemNEqB4qI0tRAloUZNKOO0nHJ-hW5Pc3tnj_bF3kaXHu0Llg9_leeCJOruRBlnvXdQF71rWu2-CkqKYQPF3wb4D-wnej8</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Cheng, Yugang</creator><creator>Zeng, Mengru</creator><creator>Lu, Zhaohui</creator><creator>Du, Xidong</creator><creator>Yin, Hong</creator><creator>Yang, Liu</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-6353-1939</orcidid></search><sort><creationdate>20200501</creationdate><title>Effects of Supercritical CO2 Treatment Temperatures on Mineral Composition, Pore Structure and Functional Groups of Shale: Implications for CO2 Sequestration</title><author>Cheng, Yugang ; Zeng, Mengru ; Lu, Zhaohui ; Du, Xidong ; Yin, Hong ; Yang, Liu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-da71a521c56a4d77ee48d4a99172e0b7a7230cbc99e935bcf55b01c961231b833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Abundance</topic><topic>Adsorption</topic><topic>Aliphatic hydrocarbons</topic><topic>Aromatic hydrocarbons</topic><topic>Carbon dioxide</topic><topic>Clay minerals</topic><topic>Composition</topic><topic>Destruction</topic><topic>Dissolution</topic><topic>Energy consumption</topic><topic>Energy industry</topic><topic>Fourier transforms</topic><topic>Fractal geometry</topic><topic>Functional groups</topic><topic>Geology</topic><topic>Hydraulic fracturing</topic><topic>Hydrocarbons</topic><topic>Infrared spectroscopy</topic><topic>Mineral composition</topic><topic>Mineral reserves</topic><topic>Minerals</topic><topic>Natural gas reserves</topic><topic>Permeability</topic><topic>Porosity</topic><topic>Research methodology</topic><topic>Researchers</topic><topic>Shale</topic><topic>Temperature</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Yugang</creatorcontrib><creatorcontrib>Zeng, Mengru</creatorcontrib><creatorcontrib>Lu, Zhaohui</creatorcontrib><creatorcontrib>Du, Xidong</creatorcontrib><creatorcontrib>Yin, Hong</creatorcontrib><creatorcontrib>Yang, Liu</creatorcontrib><collection>CrossRef</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Yugang</au><au>Zeng, Mengru</au><au>Lu, Zhaohui</au><au>Du, Xidong</au><au>Yin, Hong</au><au>Yang, Liu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of Supercritical CO2 Treatment Temperatures on Mineral Composition, Pore Structure and Functional Groups of Shale: Implications for CO2 Sequestration</atitle><jtitle>Sustainability</jtitle><date>2020-05-01</date><risdate>2020</risdate><volume>12</volume><issue>9</issue><spage>3927</spage><pages>3927-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>Research on the physicochemical reactions between supercritical carbon dioxide (Sc-CO2) and shale at different temperature is essential for geological CO2 sequestration. In this paper, shale from the Longmaxi formation in Sichuan basin of China was collected to study the changes in mineral composition, pore structure, and organic functional groups treated with Sc-CO2 at fixed pressure 8 MPa and temperatures 40 °C to 80 °C. Samples were analyzed with x-ray diffraction, CO2/N2 gas adsorption, and Fourier transform infrared spectroscopy. The results show that the dissolution of clay minerals by Sc-CO2 first declined, but then increased when the temperature increased; dissolution reached a minimum at 60 °C. The specific surface area, total pore volume, predominant pore type (mesopores), and fractal dimension of the shale pore structure first increases and then decreases with increasing temperature. The destruction of hydroxyl structures by Sc-CO2 is related to the destruction of OH–N and ring hydroxyls. As the temperature increases, the hydroxyl destruction first increases and then decreases. The aromatic hydrocarbons are mainly dominated by 3H and 2H, and their abundances increase significantly as temperature increases, whereas the 4H shows a decreasing trend; the 1H abundance does not change appreciably. The relative abundances of aromatic and aliphatic hydrocarbons decrease linearly as the temperature increases. These research results provide theoretical support for the geological storage of Sc-CO2 in shale at different temperatures.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su12093927</doi><orcidid>https://orcid.org/0000-0002-6353-1939</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2071-1050 |
ispartof | Sustainability, 2020-05, Vol.12 (9), p.3927 |
issn | 2071-1050 2071-1050 |
language | eng |
recordid | cdi_proquest_journals_2403314450 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Abundance Adsorption Aliphatic hydrocarbons Aromatic hydrocarbons Carbon dioxide Clay minerals Composition Destruction Dissolution Energy consumption Energy industry Fourier transforms Fractal geometry Functional groups Geology Hydraulic fracturing Hydrocarbons Infrared spectroscopy Mineral composition Mineral reserves Minerals Natural gas reserves Permeability Porosity Research methodology Researchers Shale Temperature X-ray diffraction |
title | Effects of Supercritical CO2 Treatment Temperatures on Mineral Composition, Pore Structure and Functional Groups of Shale: Implications for CO2 Sequestration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T12%3A54%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20Supercritical%20CO2%20Treatment%20Temperatures%20on%20Mineral%20Composition,%20Pore%20Structure%20and%20Functional%20Groups%20of%20Shale:%20Implications%20for%20CO2%20Sequestration&rft.jtitle=Sustainability&rft.au=Cheng,%20Yugang&rft.date=2020-05-01&rft.volume=12&rft.issue=9&rft.spage=3927&rft.pages=3927-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su12093927&rft_dat=%3Cproquest_cross%3E2403314450%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2403314450&rft_id=info:pmid/&rfr_iscdi=true |