Twisted light on a chip

Compact devices provide new ways to generate and detect optical vortex beams A large-scale vortex is an extraordinary phenomenon to behold, be it a hurricane in the North Atlantic Ocean or the Great Red Spot on Jupiter. A vortex on a small scale is equally fascinating, especially when its quantum na...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2020-05, Vol.368 (6492), p.707-708
1. Verfasser: Ge, Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 708
container_issue 6492
container_start_page 707
container_title Science (American Association for the Advancement of Science)
container_volume 368
creator Ge, Li
description Compact devices provide new ways to generate and detect optical vortex beams A large-scale vortex is an extraordinary phenomenon to behold, be it a hurricane in the North Atlantic Ocean or the Great Red Spot on Jupiter. A vortex on a small scale is equally fascinating, especially when its quantum nature starts to emerge. Alexei Abrikosov won a Nobel Prize by introducing vortices in a phenomenological model to describe a new type of superconductor in 1950s ( 1 ), which turned out to be a feature of paired electrons in supercurrent. A very different type of vortex can be created for light ( 2 ). On pages 760 and 763 of this issue, Zhang et al. ( 3 ) and Ji et al. ( 4 ) demonstrate new ways to generate and detect such optical vortex beams on a tiny semiconductor chip.
doi_str_mv 10.1126/science.abb8091
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2403139594</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2403139594</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-d979c44ec0e835059bd97e46850126670dd859f7a23e98cb5524868686d1a4d93</originalsourceid><addsrcrecordid>eNotj0trwzAQhEVpoW7ac66Gnp2svJIsHUvoCwK9pGchS3KjkNqu5FD676sQs4eF3WFmPkKWFFaU1mKdbPC99SvTthIUvSIFBcUrVQNekwIARSWh4bfkLqUDQP4pLMhy9xvS5F15DF_7qRz60pR2H8Z7ctOZY_IP816Qz5fn3eat2n68vm-etpVF5FPlVKMsY96Cl8iBqzZfPBOSQ-4kGnBOctU1pkavpG05r5kU53HUMKdwQR4vvmMcfk4-TfownGKfI3XNACnmmiyr1heVjUNK0Xd6jOHbxD9NQZ_p9UyvZ3r8Bw7jTEw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2403139594</pqid></control><display><type>article</type><title>Twisted light on a chip</title><source>American Association for the Advancement of Science</source><creator>Ge, Li</creator><creatorcontrib>Ge, Li</creatorcontrib><description>Compact devices provide new ways to generate and detect optical vortex beams A large-scale vortex is an extraordinary phenomenon to behold, be it a hurricane in the North Atlantic Ocean or the Great Red Spot on Jupiter. A vortex on a small scale is equally fascinating, especially when its quantum nature starts to emerge. Alexei Abrikosov won a Nobel Prize by introducing vortices in a phenomenological model to describe a new type of superconductor in 1950s ( 1 ), which turned out to be a feature of paired electrons in supercurrent. A very different type of vortex can be created for light ( 2 ). On pages 760 and 763 of this issue, Zhang et al. ( 3 ) and Ji et al. ( 4 ) demonstrate new ways to generate and detect such optical vortex beams on a tiny semiconductor chip.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.abb8091</identifier><language>eng</language><publisher>Washington: The American Association for the Advancement of Science</publisher><subject>Electron beams ; Hurricanes ; Jupiter red spot ; Semiconductors ; Vortices</subject><ispartof>Science (American Association for the Advancement of Science), 2020-05, Vol.368 (6492), p.707-708</ispartof><rights>Copyright © 2020, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-d979c44ec0e835059bd97e46850126670dd859f7a23e98cb5524868686d1a4d93</citedby><cites>FETCH-LOGICAL-c335t-d979c44ec0e835059bd97e46850126670dd859f7a23e98cb5524868686d1a4d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2884,2885,27924,27925</link.rule.ids></links><search><creatorcontrib>Ge, Li</creatorcontrib><title>Twisted light on a chip</title><title>Science (American Association for the Advancement of Science)</title><description>Compact devices provide new ways to generate and detect optical vortex beams A large-scale vortex is an extraordinary phenomenon to behold, be it a hurricane in the North Atlantic Ocean or the Great Red Spot on Jupiter. A vortex on a small scale is equally fascinating, especially when its quantum nature starts to emerge. Alexei Abrikosov won a Nobel Prize by introducing vortices in a phenomenological model to describe a new type of superconductor in 1950s ( 1 ), which turned out to be a feature of paired electrons in supercurrent. A very different type of vortex can be created for light ( 2 ). On pages 760 and 763 of this issue, Zhang et al. ( 3 ) and Ji et al. ( 4 ) demonstrate new ways to generate and detect such optical vortex beams on a tiny semiconductor chip.</description><subject>Electron beams</subject><subject>Hurricanes</subject><subject>Jupiter red spot</subject><subject>Semiconductors</subject><subject>Vortices</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNotj0trwzAQhEVpoW7ac66Gnp2svJIsHUvoCwK9pGchS3KjkNqu5FD676sQs4eF3WFmPkKWFFaU1mKdbPC99SvTthIUvSIFBcUrVQNekwIARSWh4bfkLqUDQP4pLMhy9xvS5F15DF_7qRz60pR2H8Z7ctOZY_IP816Qz5fn3eat2n68vm-etpVF5FPlVKMsY96Cl8iBqzZfPBOSQ-4kGnBOctU1pkavpG05r5kU53HUMKdwQR4vvmMcfk4-TfownGKfI3XNACnmmiyr1heVjUNK0Xd6jOHbxD9NQZ_p9UyvZ3r8Bw7jTEw</recordid><startdate>20200515</startdate><enddate>20200515</enddate><creator>Ge, Li</creator><general>The American Association for the Advancement of Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20200515</creationdate><title>Twisted light on a chip</title><author>Ge, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-d979c44ec0e835059bd97e46850126670dd859f7a23e98cb5524868686d1a4d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Electron beams</topic><topic>Hurricanes</topic><topic>Jupiter red spot</topic><topic>Semiconductors</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ge, Li</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ge, Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Twisted light on a chip</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><date>2020-05-15</date><risdate>2020</risdate><volume>368</volume><issue>6492</issue><spage>707</spage><epage>708</epage><pages>707-708</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Compact devices provide new ways to generate and detect optical vortex beams A large-scale vortex is an extraordinary phenomenon to behold, be it a hurricane in the North Atlantic Ocean or the Great Red Spot on Jupiter. A vortex on a small scale is equally fascinating, especially when its quantum nature starts to emerge. Alexei Abrikosov won a Nobel Prize by introducing vortices in a phenomenological model to describe a new type of superconductor in 1950s ( 1 ), which turned out to be a feature of paired electrons in supercurrent. A very different type of vortex can be created for light ( 2 ). On pages 760 and 763 of this issue, Zhang et al. ( 3 ) and Ji et al. ( 4 ) demonstrate new ways to generate and detect such optical vortex beams on a tiny semiconductor chip.</abstract><cop>Washington</cop><pub>The American Association for the Advancement of Science</pub><doi>10.1126/science.abb8091</doi><tpages>2</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2020-05, Vol.368 (6492), p.707-708
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_journals_2403139594
source American Association for the Advancement of Science
subjects Electron beams
Hurricanes
Jupiter red spot
Semiconductors
Vortices
title Twisted light on a chip
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T12%3A58%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Twisted%20light%20on%20a%20chip&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Ge,%20Li&rft.date=2020-05-15&rft.volume=368&rft.issue=6492&rft.spage=707&rft.epage=708&rft.pages=707-708&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.abb8091&rft_dat=%3Cproquest_cross%3E2403139594%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2403139594&rft_id=info:pmid/&rfr_iscdi=true