Gauss–Newton–Kurchatov Method for the Solution of Nonlinear Least-Squares Problems
We propose and study an iterative method for the solution of a nonlinear least-squares problem with nondifferentiable operator. In this method, instead of the Jacobian, we use the sum of derivative of the differentiable part of the operator and divided difference with specially chosen points of the...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2020-05, Vol.247 (1), p.58-72 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 72 |
---|---|
container_issue | 1 |
container_start_page | 58 |
container_title | Journal of mathematical sciences (New York, N.Y.) |
container_volume | 247 |
creator | Shakhno, S. М. |
description | We propose and study an iterative method for the solution of a nonlinear least-squares problem with nondifferentiable operator. In this method, instead of the Jacobian, we use the sum of derivative of the differentiable part of the operator and divided difference with specially chosen points of the nondifferentiable part of operator. We prove a theorem substantiating the process of convergence of the proposed method and establish its rate. We also present the results of numerical experiments carried out for the test problems with nondifferentiable operators. |
doi_str_mv | 10.1007/s10958-020-04789-y |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2403117447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A629603233</galeid><sourcerecordid>A629603233</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417y-8a4f9c72b6b0a3e60997f505af42faa9ff50d32ab24d38021543fd9b7e64c0373</originalsourceid><addsrcrecordid>eNp9kc9u1DAQh6MKpJbCC3CK1FMPLuM_ieNjVbWl6lIQC1wtJxnvpsrare0Ae-s78IY8CS6L1K60Qj54PPq-sTS_onhL4YQCyHeRgqoaAgwICNkost4rDmglOWmkql7kGiQjnEuxX7yK8RayVDf8oPh2aaYYfz_8usEfybtcXE-hW5rkv5cfMC19X1ofyrTEcu7HKQ3eld6WN96Ng0MTyhmamMj8fjIBY_kp-HbEVXxdvLRmjPjm331YfL04_3L2nsw-Xl6dnc5IJ6hck8YIqzrJ2roFw7EGpaStoDJWMGuMsvnRc2ZaJnreAKOV4LZXrcRadMAlPyyONnPvgr-fMCZ966fg8peaCeCUSiGeUQszoh6c9SmYbjXETp_WTNXAGeeZIjuoBToMZvQO7ZDbW_zJDj6fHldDt1M43hIyk_BnWjwmoK_mn7dZtmG74GMMaPVdGFYmrDUF_Ri53kSuc-T6b-R6nSW-kWKG3QLD0zb-Y_0BAiGugQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2403117447</pqid></control><display><type>article</type><title>Gauss–Newton–Kurchatov Method for the Solution of Nonlinear Least-Squares Problems</title><source>Springer Nature - Complete Springer Journals</source><creator>Shakhno, S. М.</creator><creatorcontrib>Shakhno, S. М.</creatorcontrib><description>We propose and study an iterative method for the solution of a nonlinear least-squares problem with nondifferentiable operator. In this method, instead of the Jacobian, we use the sum of derivative of the differentiable part of the operator and divided difference with specially chosen points of the nondifferentiable part of operator. We prove a theorem substantiating the process of convergence of the proposed method and establish its rate. We also present the results of numerical experiments carried out for the test problems with nondifferentiable operators.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-020-04789-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Iterative methods ; Least squares method ; Mathematics ; Mathematics and Statistics</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2020-05, Vol.247 (1), p.58-72</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417y-8a4f9c72b6b0a3e60997f505af42faa9ff50d32ab24d38021543fd9b7e64c0373</citedby><cites>FETCH-LOGICAL-c417y-8a4f9c72b6b0a3e60997f505af42faa9ff50d32ab24d38021543fd9b7e64c0373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10958-020-04789-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10958-020-04789-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Shakhno, S. М.</creatorcontrib><title>Gauss–Newton–Kurchatov Method for the Solution of Nonlinear Least-Squares Problems</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>We propose and study an iterative method for the solution of a nonlinear least-squares problem with nondifferentiable operator. In this method, instead of the Jacobian, we use the sum of derivative of the differentiable part of the operator and divided difference with specially chosen points of the nondifferentiable part of operator. We prove a theorem substantiating the process of convergence of the proposed method and establish its rate. We also present the results of numerical experiments carried out for the test problems with nondifferentiable operators.</description><subject>Iterative methods</subject><subject>Least squares method</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kc9u1DAQh6MKpJbCC3CK1FMPLuM_ieNjVbWl6lIQC1wtJxnvpsrare0Ae-s78IY8CS6L1K60Qj54PPq-sTS_onhL4YQCyHeRgqoaAgwICNkost4rDmglOWmkql7kGiQjnEuxX7yK8RayVDf8oPh2aaYYfz_8usEfybtcXE-hW5rkv5cfMC19X1ofyrTEcu7HKQ3eld6WN96Ng0MTyhmamMj8fjIBY_kp-HbEVXxdvLRmjPjm331YfL04_3L2nsw-Xl6dnc5IJ6hck8YIqzrJ2roFw7EGpaStoDJWMGuMsvnRc2ZaJnreAKOV4LZXrcRadMAlPyyONnPvgr-fMCZ966fg8peaCeCUSiGeUQszoh6c9SmYbjXETp_WTNXAGeeZIjuoBToMZvQO7ZDbW_zJDj6fHldDt1M43hIyk_BnWjwmoK_mn7dZtmG74GMMaPVdGFYmrDUF_Ri53kSuc-T6b-R6nSW-kWKG3QLD0zb-Y_0BAiGugQ</recordid><startdate>20200504</startdate><enddate>20200504</enddate><creator>Shakhno, S. М.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20200504</creationdate><title>Gauss–Newton–Kurchatov Method for the Solution of Nonlinear Least-Squares Problems</title><author>Shakhno, S. М.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417y-8a4f9c72b6b0a3e60997f505af42faa9ff50d32ab24d38021543fd9b7e64c0373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Iterative methods</topic><topic>Least squares method</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shakhno, S. М.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shakhno, S. М.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gauss–Newton–Kurchatov Method for the Solution of Nonlinear Least-Squares Problems</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2020-05-04</date><risdate>2020</risdate><volume>247</volume><issue>1</issue><spage>58</spage><epage>72</epage><pages>58-72</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>We propose and study an iterative method for the solution of a nonlinear least-squares problem with nondifferentiable operator. In this method, instead of the Jacobian, we use the sum of derivative of the differentiable part of the operator and divided difference with specially chosen points of the nondifferentiable part of operator. We prove a theorem substantiating the process of convergence of the proposed method and establish its rate. We also present the results of numerical experiments carried out for the test problems with nondifferentiable operators.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10958-020-04789-y</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1072-3374 |
ispartof | Journal of mathematical sciences (New York, N.Y.), 2020-05, Vol.247 (1), p.58-72 |
issn | 1072-3374 1573-8795 |
language | eng |
recordid | cdi_proquest_journals_2403117447 |
source | Springer Nature - Complete Springer Journals |
subjects | Iterative methods Least squares method Mathematics Mathematics and Statistics |
title | Gauss–Newton–Kurchatov Method for the Solution of Nonlinear Least-Squares Problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T18%3A31%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gauss%E2%80%93Newton%E2%80%93Kurchatov%20Method%20for%20the%20Solution%20of%20Nonlinear%20Least-Squares%20Problems&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Shakhno,%20S.%20%D0%9C.&rft.date=2020-05-04&rft.volume=247&rft.issue=1&rft.spage=58&rft.epage=72&rft.pages=58-72&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-020-04789-y&rft_dat=%3Cgale_proqu%3EA629603233%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2403117447&rft_id=info:pmid/&rft_galeid=A629603233&rfr_iscdi=true |