Decoupling of zircon U–Pb and trace-element systematics driven by U diffusion in eclogite-facies zircon (Monviso meta-ophiolite, W. Alps)

Zircon is widely used to date metamorphic processes, particularly due to slow cation diffusion under crustal conditions. Here, we present laser-ablation depth profiling data that demonstrate rapid U diffusion in partially altered, high-pressure zircon. The zircons are hosted in metagabbros that unde...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Contributions to mineralogy and petrology 2020-06, Vol.175 (6), Article 55
Hauptverfasser: Garber, Joshua M., Smye, Andrew J., Feineman, Maureen D., Kylander-Clark, Andrew R. C., Matthews, Simon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page
container_title Contributions to mineralogy and petrology
container_volume 175
creator Garber, Joshua M.
Smye, Andrew J.
Feineman, Maureen D.
Kylander-Clark, Andrew R. C.
Matthews, Simon
description Zircon is widely used to date metamorphic processes, particularly due to slow cation diffusion under crustal conditions. Here, we present laser-ablation depth profiling data that demonstrate rapid U diffusion in partially altered, high-pressure zircon. The zircons are hosted in metagabbros that underwent eclogite-facies (~ 550 °C, ~ 2.6 GPa) recrystallization during subduction of the Monviso meta-ophiolite. One metagabbro contains only newly grown zircons (50.2 ± 1.1 Ma); two coarser-grained samples exhibit thin metamorphic rims on igneous cores. Most profiles in the coarse-grained samples record discrete Pb C -rich and Pb*-, U-, Th-, and trace-element poor rims in the outermost ≤ 5 µm of each grain, but U shows apparent diffusion profiles that extend ~ 10–15 µm into zircon crystals and correlate with U–Pb date resetting. The data define three populations (cores, diffusively reset rims, and newly precipitated rims) that form two two-component mixtures, indicating that recrystallization was everywhere coupled with U addition. Data from fully equilibrated rims form a single age population (51.1 ± 0.4 Ma) within error of the newly grown zircon and compatible with ~ 1 My fluid–rock interaction timescales. We interpret the U profiles as evidence of inward U diffusion associated with fluid-induced resorption, and systematically exclude other mechanisms for their formation. However, calculated diffusivity estimates are > 20 orders of magnitude faster than predicted by experiments. The absence of zircon lattice damage, and the propagation of diffusion inward of a reaction front, indicates a link between fluid-saturated zircon alteration and fast U diffusion in zircon. Our results emphasize that–-even at low temperature–-zircon U–Pb systematics may be affected by parent and/or daughter diffusion over length scales large enough to affect laser-ablation or ion microprobe spot analyses.
doi_str_mv 10.1007/s00410-020-01692-2
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2402809962</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A623955276</galeid><sourcerecordid>A623955276</sourcerecordid><originalsourceid>FETCH-LOGICAL-a447t-a955f2e4f8a1ead80f1a8459a8db4d02423021006f7d4a35642909d1dc6ff4113</originalsourceid><addsrcrecordid>eNp9kc-KFDEQxoMoOO76Ap4CXhTMbJJO_8lx2HVV2EUPDh5DJqm0WbqTNulZGE_e9-gb-iSbcZRFGCSEUKnfV6nUh9ALRpeM0vYsUyoYJZSXzRrJCX-EFkxUnFDZtI_RgtKSbqWUT9GznG9oiTtZL9DdBZi4nQYfehwd_u6TiQGvf_34-WmDdbB4TtoAgQFGCDPOuzzDqGdvMrbJ30LAmx1eY-ud22ZfpD5gMEPs_QzEaeMh_y366jqGW58jHmHWJE5ffRwK9QZ_WeLVMOXXp-iJ00OG53_OE7S-fPv5_D25-vjuw_nqimgh2ploWdeOg3CdZqBtRx3Tnail7uxGWMoFrygvU2lca4Wu6kZwSaVl1jTOCcaqE_TyUHdK8dsW8qxu4jaF8qTigvKOStnwB6rXAygfXNyPYvTZqFVJlyZ42xSKHKF6CJD0EAM4X67_4ZdH-LIsjN4cFfCDwKSYcwKnpuRHnXaKUbX3Xh28V8V79dt7te-9OohygUMP6eGH_1HdA_rLsO0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2402809962</pqid></control><display><type>article</type><title>Decoupling of zircon U–Pb and trace-element systematics driven by U diffusion in eclogite-facies zircon (Monviso meta-ophiolite, W. Alps)</title><source>SpringerLink Journals - AutoHoldings</source><creator>Garber, Joshua M. ; Smye, Andrew J. ; Feineman, Maureen D. ; Kylander-Clark, Andrew R. C. ; Matthews, Simon</creator><creatorcontrib>Garber, Joshua M. ; Smye, Andrew J. ; Feineman, Maureen D. ; Kylander-Clark, Andrew R. C. ; Matthews, Simon</creatorcontrib><description>Zircon is widely used to date metamorphic processes, particularly due to slow cation diffusion under crustal conditions. Here, we present laser-ablation depth profiling data that demonstrate rapid U diffusion in partially altered, high-pressure zircon. The zircons are hosted in metagabbros that underwent eclogite-facies (~ 550 °C, ~ 2.6 GPa) recrystallization during subduction of the Monviso meta-ophiolite. One metagabbro contains only newly grown zircons (50.2 ± 1.1 Ma); two coarser-grained samples exhibit thin metamorphic rims on igneous cores. Most profiles in the coarse-grained samples record discrete Pb C -rich and Pb*-, U-, Th-, and trace-element poor rims in the outermost ≤ 5 µm of each grain, but U shows apparent diffusion profiles that extend ~ 10–15 µm into zircon crystals and correlate with U–Pb date resetting. The data define three populations (cores, diffusively reset rims, and newly precipitated rims) that form two two-component mixtures, indicating that recrystallization was everywhere coupled with U addition. Data from fully equilibrated rims form a single age population (51.1 ± 0.4 Ma) within error of the newly grown zircon and compatible with ~ 1 My fluid–rock interaction timescales. We interpret the U profiles as evidence of inward U diffusion associated with fluid-induced resorption, and systematically exclude other mechanisms for their formation. However, calculated diffusivity estimates are &gt; 20 orders of magnitude faster than predicted by experiments. The absence of zircon lattice damage, and the propagation of diffusion inward of a reaction front, indicates a link between fluid-saturated zircon alteration and fast U diffusion in zircon. Our results emphasize that–-even at low temperature–-zircon U–Pb systematics may be affected by parent and/or daughter diffusion over length scales large enough to affect laser-ablation or ion microprobe spot analyses.</description><identifier>ISSN: 0010-7999</identifier><identifier>EISSN: 1432-0967</identifier><identifier>DOI: 10.1007/s00410-020-01692-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Ablation ; Cations ; Cores ; Crystals ; Decoupling ; Depth profiling ; Diffusion ; Diffusion rate ; Earth and Environmental Science ; Earth Sciences ; Eclogite ; Geology ; Isotopes ; Laser ablation ; Lasers ; Low temperature ; Mass spectrometry ; Metamorphic rocks ; Mineral Resources ; Mineralogy ; Ophiolites ; Original Paper ; Petrology ; Profiles ; Radiometric dating ; Recrystallization ; Rims ; Scientific imaging ; Subduction ; Systematics ; Trace elements ; Zircon ; Zirconium</subject><ispartof>Contributions to mineralogy and petrology, 2020-06, Vol.175 (6), Article 55</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a447t-a955f2e4f8a1ead80f1a8459a8db4d02423021006f7d4a35642909d1dc6ff4113</citedby><cites>FETCH-LOGICAL-a447t-a955f2e4f8a1ead80f1a8459a8db4d02423021006f7d4a35642909d1dc6ff4113</cites><orcidid>0000-0001-5313-0982</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00410-020-01692-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00410-020-01692-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Garber, Joshua M.</creatorcontrib><creatorcontrib>Smye, Andrew J.</creatorcontrib><creatorcontrib>Feineman, Maureen D.</creatorcontrib><creatorcontrib>Kylander-Clark, Andrew R. C.</creatorcontrib><creatorcontrib>Matthews, Simon</creatorcontrib><title>Decoupling of zircon U–Pb and trace-element systematics driven by U diffusion in eclogite-facies zircon (Monviso meta-ophiolite, W. Alps)</title><title>Contributions to mineralogy and petrology</title><addtitle>Contrib Mineral Petrol</addtitle><description>Zircon is widely used to date metamorphic processes, particularly due to slow cation diffusion under crustal conditions. Here, we present laser-ablation depth profiling data that demonstrate rapid U diffusion in partially altered, high-pressure zircon. The zircons are hosted in metagabbros that underwent eclogite-facies (~ 550 °C, ~ 2.6 GPa) recrystallization during subduction of the Monviso meta-ophiolite. One metagabbro contains only newly grown zircons (50.2 ± 1.1 Ma); two coarser-grained samples exhibit thin metamorphic rims on igneous cores. Most profiles in the coarse-grained samples record discrete Pb C -rich and Pb*-, U-, Th-, and trace-element poor rims in the outermost ≤ 5 µm of each grain, but U shows apparent diffusion profiles that extend ~ 10–15 µm into zircon crystals and correlate with U–Pb date resetting. The data define three populations (cores, diffusively reset rims, and newly precipitated rims) that form two two-component mixtures, indicating that recrystallization was everywhere coupled with U addition. Data from fully equilibrated rims form a single age population (51.1 ± 0.4 Ma) within error of the newly grown zircon and compatible with ~ 1 My fluid–rock interaction timescales. We interpret the U profiles as evidence of inward U diffusion associated with fluid-induced resorption, and systematically exclude other mechanisms for their formation. However, calculated diffusivity estimates are &gt; 20 orders of magnitude faster than predicted by experiments. The absence of zircon lattice damage, and the propagation of diffusion inward of a reaction front, indicates a link between fluid-saturated zircon alteration and fast U diffusion in zircon. Our results emphasize that–-even at low temperature–-zircon U–Pb systematics may be affected by parent and/or daughter diffusion over length scales large enough to affect laser-ablation or ion microprobe spot analyses.</description><subject>Ablation</subject><subject>Cations</subject><subject>Cores</subject><subject>Crystals</subject><subject>Decoupling</subject><subject>Depth profiling</subject><subject>Diffusion</subject><subject>Diffusion rate</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Eclogite</subject><subject>Geology</subject><subject>Isotopes</subject><subject>Laser ablation</subject><subject>Lasers</subject><subject>Low temperature</subject><subject>Mass spectrometry</subject><subject>Metamorphic rocks</subject><subject>Mineral Resources</subject><subject>Mineralogy</subject><subject>Ophiolites</subject><subject>Original Paper</subject><subject>Petrology</subject><subject>Profiles</subject><subject>Radiometric dating</subject><subject>Recrystallization</subject><subject>Rims</subject><subject>Scientific imaging</subject><subject>Subduction</subject><subject>Systematics</subject><subject>Trace elements</subject><subject>Zircon</subject><subject>Zirconium</subject><issn>0010-7999</issn><issn>1432-0967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kc-KFDEQxoMoOO76Ap4CXhTMbJJO_8lx2HVV2EUPDh5DJqm0WbqTNulZGE_e9-gb-iSbcZRFGCSEUKnfV6nUh9ALRpeM0vYsUyoYJZSXzRrJCX-EFkxUnFDZtI_RgtKSbqWUT9GznG9oiTtZL9DdBZi4nQYfehwd_u6TiQGvf_34-WmDdbB4TtoAgQFGCDPOuzzDqGdvMrbJ30LAmx1eY-ud22ZfpD5gMEPs_QzEaeMh_y366jqGW58jHmHWJE5ffRwK9QZ_WeLVMOXXp-iJ00OG53_OE7S-fPv5_D25-vjuw_nqimgh2ploWdeOg3CdZqBtRx3Tnail7uxGWMoFrygvU2lca4Wu6kZwSaVl1jTOCcaqE_TyUHdK8dsW8qxu4jaF8qTigvKOStnwB6rXAygfXNyPYvTZqFVJlyZ42xSKHKF6CJD0EAM4X67_4ZdH-LIsjN4cFfCDwKSYcwKnpuRHnXaKUbX3Xh28V8V79dt7te-9OohygUMP6eGH_1HdA_rLsO0</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Garber, Joshua M.</creator><creator>Smye, Andrew J.</creator><creator>Feineman, Maureen D.</creator><creator>Kylander-Clark, Andrew R. C.</creator><creator>Matthews, Simon</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L.G</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>R05</scope><orcidid>https://orcid.org/0000-0001-5313-0982</orcidid></search><sort><creationdate>20200601</creationdate><title>Decoupling of zircon U–Pb and trace-element systematics driven by U diffusion in eclogite-facies zircon (Monviso meta-ophiolite, W. Alps)</title><author>Garber, Joshua M. ; Smye, Andrew J. ; Feineman, Maureen D. ; Kylander-Clark, Andrew R. C. ; Matthews, Simon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a447t-a955f2e4f8a1ead80f1a8459a8db4d02423021006f7d4a35642909d1dc6ff4113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ablation</topic><topic>Cations</topic><topic>Cores</topic><topic>Crystals</topic><topic>Decoupling</topic><topic>Depth profiling</topic><topic>Diffusion</topic><topic>Diffusion rate</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Eclogite</topic><topic>Geology</topic><topic>Isotopes</topic><topic>Laser ablation</topic><topic>Lasers</topic><topic>Low temperature</topic><topic>Mass spectrometry</topic><topic>Metamorphic rocks</topic><topic>Mineral Resources</topic><topic>Mineralogy</topic><topic>Ophiolites</topic><topic>Original Paper</topic><topic>Petrology</topic><topic>Profiles</topic><topic>Radiometric dating</topic><topic>Recrystallization</topic><topic>Rims</topic><topic>Scientific imaging</topic><topic>Subduction</topic><topic>Systematics</topic><topic>Trace elements</topic><topic>Zircon</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garber, Joshua M.</creatorcontrib><creatorcontrib>Smye, Andrew J.</creatorcontrib><creatorcontrib>Feineman, Maureen D.</creatorcontrib><creatorcontrib>Kylander-Clark, Andrew R. C.</creatorcontrib><creatorcontrib>Matthews, Simon</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><jtitle>Contributions to mineralogy and petrology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garber, Joshua M.</au><au>Smye, Andrew J.</au><au>Feineman, Maureen D.</au><au>Kylander-Clark, Andrew R. C.</au><au>Matthews, Simon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decoupling of zircon U–Pb and trace-element systematics driven by U diffusion in eclogite-facies zircon (Monviso meta-ophiolite, W. Alps)</atitle><jtitle>Contributions to mineralogy and petrology</jtitle><stitle>Contrib Mineral Petrol</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>175</volume><issue>6</issue><artnum>55</artnum><issn>0010-7999</issn><eissn>1432-0967</eissn><abstract>Zircon is widely used to date metamorphic processes, particularly due to slow cation diffusion under crustal conditions. Here, we present laser-ablation depth profiling data that demonstrate rapid U diffusion in partially altered, high-pressure zircon. The zircons are hosted in metagabbros that underwent eclogite-facies (~ 550 °C, ~ 2.6 GPa) recrystallization during subduction of the Monviso meta-ophiolite. One metagabbro contains only newly grown zircons (50.2 ± 1.1 Ma); two coarser-grained samples exhibit thin metamorphic rims on igneous cores. Most profiles in the coarse-grained samples record discrete Pb C -rich and Pb*-, U-, Th-, and trace-element poor rims in the outermost ≤ 5 µm of each grain, but U shows apparent diffusion profiles that extend ~ 10–15 µm into zircon crystals and correlate with U–Pb date resetting. The data define three populations (cores, diffusively reset rims, and newly precipitated rims) that form two two-component mixtures, indicating that recrystallization was everywhere coupled with U addition. Data from fully equilibrated rims form a single age population (51.1 ± 0.4 Ma) within error of the newly grown zircon and compatible with ~ 1 My fluid–rock interaction timescales. We interpret the U profiles as evidence of inward U diffusion associated with fluid-induced resorption, and systematically exclude other mechanisms for their formation. However, calculated diffusivity estimates are &gt; 20 orders of magnitude faster than predicted by experiments. The absence of zircon lattice damage, and the propagation of diffusion inward of a reaction front, indicates a link between fluid-saturated zircon alteration and fast U diffusion in zircon. Our results emphasize that–-even at low temperature–-zircon U–Pb systematics may be affected by parent and/or daughter diffusion over length scales large enough to affect laser-ablation or ion microprobe spot analyses.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00410-020-01692-2</doi><orcidid>https://orcid.org/0000-0001-5313-0982</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0010-7999
ispartof Contributions to mineralogy and petrology, 2020-06, Vol.175 (6), Article 55
issn 0010-7999
1432-0967
language eng
recordid cdi_proquest_journals_2402809962
source SpringerLink Journals - AutoHoldings
subjects Ablation
Cations
Cores
Crystals
Decoupling
Depth profiling
Diffusion
Diffusion rate
Earth and Environmental Science
Earth Sciences
Eclogite
Geology
Isotopes
Laser ablation
Lasers
Low temperature
Mass spectrometry
Metamorphic rocks
Mineral Resources
Mineralogy
Ophiolites
Original Paper
Petrology
Profiles
Radiometric dating
Recrystallization
Rims
Scientific imaging
Subduction
Systematics
Trace elements
Zircon
Zirconium
title Decoupling of zircon U–Pb and trace-element systematics driven by U diffusion in eclogite-facies zircon (Monviso meta-ophiolite, W. Alps)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A00%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decoupling%20of%20zircon%20U%E2%80%93Pb%20and%20trace-element%20systematics%20driven%20by%20U%20diffusion%20in%20eclogite-facies%20zircon%20(Monviso%20meta-ophiolite,%20W.%20Alps)&rft.jtitle=Contributions%20to%20mineralogy%20and%20petrology&rft.au=Garber,%20Joshua%20M.&rft.date=2020-06-01&rft.volume=175&rft.issue=6&rft.artnum=55&rft.issn=0010-7999&rft.eissn=1432-0967&rft_id=info:doi/10.1007/s00410-020-01692-2&rft_dat=%3Cgale_proqu%3EA623955276%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2402809962&rft_id=info:pmid/&rft_galeid=A623955276&rfr_iscdi=true