Deep Learning Convective Flow Using Conditional Generative Adversarial Networks

We developed a general deep learning framework, FluidGAN, capable of learning and predicting time-dependent convective flow coupled with energy transport. FluidGAN is thoroughly data-driven with high speed and accuracy and satisfies the physics of fluid without any prior knowledge of underlying flui...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-06
Hauptverfasser: Jiang, Changlin, Amir Barati Farimani
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We developed a general deep learning framework, FluidGAN, capable of learning and predicting time-dependent convective flow coupled with energy transport. FluidGAN is thoroughly data-driven with high speed and accuracy and satisfies the physics of fluid without any prior knowledge of underlying fluid and energy transport physics. FluidGAN also learns the coupling between velocity, pressure, and temperature fields. Our framework helps understand deterministic multiphysics phenomena where the underlying physical model is complex or unknown.
ISSN:2331-8422