An Enhanced Intelligent Diagnosis Method Based on Multi-Sensor Image Fusion via Improved Deep Learning Network

An enhanced intelligent diagnosis method for rotary equipment is proposed based on multi-sensor data-fusion and an improved deep convolutional neural network (CNN) models. An improved CNN based on LeNet-5 is constructed which can enhance the features of the samples by stacking bottleneck layers with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement 2020-06, Vol.69 (6), p.2648-2657
Hauptverfasser: Wang, Huaqing, Li, Shi, Song, Liuyang, Cui, Lingli, Wang, Pengxin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2657
container_issue 6
container_start_page 2648
container_title IEEE transactions on instrumentation and measurement
container_volume 69
creator Wang, Huaqing
Li, Shi
Song, Liuyang
Cui, Lingli
Wang, Pengxin
description An enhanced intelligent diagnosis method for rotary equipment is proposed based on multi-sensor data-fusion and an improved deep convolutional neural network (CNN) models. An improved CNN based on LeNet-5 is constructed which can enhance the features of the samples by stacking bottleneck layers without changing the size of the samples. A new conversion approaches are also proposed for converting multi-sensor vibration signals into color images, and it can refine features and enlarge the differences between different types of fault signals by the fused images transformed in red-green-blue (RGB) color space. In the last stage of network learning, visual clustering is realized with t-distributed stochastic neighbor embedding (t-SNE) to evaluate the performance of the network. To verify the effectiveness of the proposed method, examples in practice such as the diagnosis for the wind power test rigs and industrial fan system are provided with the prediction accuracies of 99.89% and 99.77%, respectively. In addition, the efficiency of other comparative baseline approaches such as the deep belief network and support vector machine (SVM) is evaluated. In conclusion, the proposed intelligent diagnosis method based on multi-sensor data-fusion and CNN shows higher prediction accuracy and more obvious visualization clustering effects.
doi_str_mv 10.1109/TIM.2019.2928346
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2402495602</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8760507</ieee_id><sourcerecordid>2402495602</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-b9993f13665c7453753792c7391c82e5cfb98177ed02eb3d8fca844d217868cd3</originalsourceid><addsrcrecordid>eNo9kEtLAzEQgIMoWKt3wUvA89Yku5vHsfahhVYP1vOSZme3qW22JrsV_70pLcLAwMw3Dz6E7ikZUErU03K2GDBC1YApJtOMX6AezXORKM7ZJeoRQmWispxfo5sQNoQQwTPRQ27o8MSttTNQ4plrYbu1NbgWj62uXRNswAto102Jn3WISOPwotu2NvkAFxqPZztdA552wcbOwepY2PvmEMkxwB7PQXtnXY3foP1p_Nctuqr0NsDdOffR53SyHL0m8_eX2Wg4TwxTtE1WSqm0oinnuRFZnooYihmRKmokg9xUKyWpEFASBqu0lJXRMstKRoXk0pRpHz2e9sZnvjsIbbFpOu_iyYJlhGUq54RFipwo45sQPFTF3tud9r8FJcXRahGtFkerxdlqHHk4jVgA-Mel4CQnIv0DMsNyig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2402495602</pqid></control><display><type>article</type><title>An Enhanced Intelligent Diagnosis Method Based on Multi-Sensor Image Fusion via Improved Deep Learning Network</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Huaqing ; Li, Shi ; Song, Liuyang ; Cui, Lingli ; Wang, Pengxin</creator><creatorcontrib>Wang, Huaqing ; Li, Shi ; Song, Liuyang ; Cui, Lingli ; Wang, Pengxin</creatorcontrib><description>An enhanced intelligent diagnosis method for rotary equipment is proposed based on multi-sensor data-fusion and an improved deep convolutional neural network (CNN) models. An improved CNN based on LeNet-5 is constructed which can enhance the features of the samples by stacking bottleneck layers without changing the size of the samples. A new conversion approaches are also proposed for converting multi-sensor vibration signals into color images, and it can refine features and enlarge the differences between different types of fault signals by the fused images transformed in red-green-blue (RGB) color space. In the last stage of network learning, visual clustering is realized with t-distributed stochastic neighbor embedding (t-SNE) to evaluate the performance of the network. To verify the effectiveness of the proposed method, examples in practice such as the diagnosis for the wind power test rigs and industrial fan system are provided with the prediction accuracies of 99.89% and 99.77%, respectively. In addition, the efficiency of other comparative baseline approaches such as the deep belief network and support vector machine (SVM) is evaluated. In conclusion, the proposed intelligent diagnosis method based on multi-sensor data-fusion and CNN shows higher prediction accuracy and more obvious visualization clustering effects.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2019.2928346</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Belief networks ; Clustering ; Color imagery ; Color-image ; Computer vision ; Convolution ; convolutional neural network (CNN) ; Data integration ; Data models ; Deep learning ; Fault diagnosis ; Feature extraction ; Image enhancement ; Image processing ; intelligent diagnosis ; Kernel ; multi-sensor data fusion ; Multisensor fusion ; Performance evaluation ; Sensors ; Support vector machines ; Test equipment ; Vibrations ; Wind power</subject><ispartof>IEEE transactions on instrumentation and measurement, 2020-06, Vol.69 (6), p.2648-2657</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-b9993f13665c7453753792c7391c82e5cfb98177ed02eb3d8fca844d217868cd3</citedby><cites>FETCH-LOGICAL-c291t-b9993f13665c7453753792c7391c82e5cfb98177ed02eb3d8fca844d217868cd3</cites><orcidid>0000-0003-2883-4018 ; 0000-0001-5333-0829</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8760507$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8760507$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Huaqing</creatorcontrib><creatorcontrib>Li, Shi</creatorcontrib><creatorcontrib>Song, Liuyang</creatorcontrib><creatorcontrib>Cui, Lingli</creatorcontrib><creatorcontrib>Wang, Pengxin</creatorcontrib><title>An Enhanced Intelligent Diagnosis Method Based on Multi-Sensor Image Fusion via Improved Deep Learning Network</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>An enhanced intelligent diagnosis method for rotary equipment is proposed based on multi-sensor data-fusion and an improved deep convolutional neural network (CNN) models. An improved CNN based on LeNet-5 is constructed which can enhance the features of the samples by stacking bottleneck layers without changing the size of the samples. A new conversion approaches are also proposed for converting multi-sensor vibration signals into color images, and it can refine features and enlarge the differences between different types of fault signals by the fused images transformed in red-green-blue (RGB) color space. In the last stage of network learning, visual clustering is realized with t-distributed stochastic neighbor embedding (t-SNE) to evaluate the performance of the network. To verify the effectiveness of the proposed method, examples in practice such as the diagnosis for the wind power test rigs and industrial fan system are provided with the prediction accuracies of 99.89% and 99.77%, respectively. In addition, the efficiency of other comparative baseline approaches such as the deep belief network and support vector machine (SVM) is evaluated. In conclusion, the proposed intelligent diagnosis method based on multi-sensor data-fusion and CNN shows higher prediction accuracy and more obvious visualization clustering effects.</description><subject>Artificial neural networks</subject><subject>Belief networks</subject><subject>Clustering</subject><subject>Color imagery</subject><subject>Color-image</subject><subject>Computer vision</subject><subject>Convolution</subject><subject>convolutional neural network (CNN)</subject><subject>Data integration</subject><subject>Data models</subject><subject>Deep learning</subject><subject>Fault diagnosis</subject><subject>Feature extraction</subject><subject>Image enhancement</subject><subject>Image processing</subject><subject>intelligent diagnosis</subject><subject>Kernel</subject><subject>multi-sensor data fusion</subject><subject>Multisensor fusion</subject><subject>Performance evaluation</subject><subject>Sensors</subject><subject>Support vector machines</subject><subject>Test equipment</subject><subject>Vibrations</subject><subject>Wind power</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLAzEQgIMoWKt3wUvA89Yku5vHsfahhVYP1vOSZme3qW22JrsV_70pLcLAwMw3Dz6E7ikZUErU03K2GDBC1YApJtOMX6AezXORKM7ZJeoRQmWispxfo5sQNoQQwTPRQ27o8MSttTNQ4plrYbu1NbgWj62uXRNswAto102Jn3WISOPwotu2NvkAFxqPZztdA552wcbOwepY2PvmEMkxwB7PQXtnXY3foP1p_Nctuqr0NsDdOffR53SyHL0m8_eX2Wg4TwxTtE1WSqm0oinnuRFZnooYihmRKmokg9xUKyWpEFASBqu0lJXRMstKRoXk0pRpHz2e9sZnvjsIbbFpOu_iyYJlhGUq54RFipwo45sQPFTF3tud9r8FJcXRahGtFkerxdlqHHk4jVgA-Mel4CQnIv0DMsNyig</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Wang, Huaqing</creator><creator>Li, Shi</creator><creator>Song, Liuyang</creator><creator>Cui, Lingli</creator><creator>Wang, Pengxin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2883-4018</orcidid><orcidid>https://orcid.org/0000-0001-5333-0829</orcidid></search><sort><creationdate>20200601</creationdate><title>An Enhanced Intelligent Diagnosis Method Based on Multi-Sensor Image Fusion via Improved Deep Learning Network</title><author>Wang, Huaqing ; Li, Shi ; Song, Liuyang ; Cui, Lingli ; Wang, Pengxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-b9993f13665c7453753792c7391c82e5cfb98177ed02eb3d8fca844d217868cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Belief networks</topic><topic>Clustering</topic><topic>Color imagery</topic><topic>Color-image</topic><topic>Computer vision</topic><topic>Convolution</topic><topic>convolutional neural network (CNN)</topic><topic>Data integration</topic><topic>Data models</topic><topic>Deep learning</topic><topic>Fault diagnosis</topic><topic>Feature extraction</topic><topic>Image enhancement</topic><topic>Image processing</topic><topic>intelligent diagnosis</topic><topic>Kernel</topic><topic>multi-sensor data fusion</topic><topic>Multisensor fusion</topic><topic>Performance evaluation</topic><topic>Sensors</topic><topic>Support vector machines</topic><topic>Test equipment</topic><topic>Vibrations</topic><topic>Wind power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Huaqing</creatorcontrib><creatorcontrib>Li, Shi</creatorcontrib><creatorcontrib>Song, Liuyang</creatorcontrib><creatorcontrib>Cui, Lingli</creatorcontrib><creatorcontrib>Wang, Pengxin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Huaqing</au><au>Li, Shi</au><au>Song, Liuyang</au><au>Cui, Lingli</au><au>Wang, Pengxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Enhanced Intelligent Diagnosis Method Based on Multi-Sensor Image Fusion via Improved Deep Learning Network</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>69</volume><issue>6</issue><spage>2648</spage><epage>2657</epage><pages>2648-2657</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>An enhanced intelligent diagnosis method for rotary equipment is proposed based on multi-sensor data-fusion and an improved deep convolutional neural network (CNN) models. An improved CNN based on LeNet-5 is constructed which can enhance the features of the samples by stacking bottleneck layers without changing the size of the samples. A new conversion approaches are also proposed for converting multi-sensor vibration signals into color images, and it can refine features and enlarge the differences between different types of fault signals by the fused images transformed in red-green-blue (RGB) color space. In the last stage of network learning, visual clustering is realized with t-distributed stochastic neighbor embedding (t-SNE) to evaluate the performance of the network. To verify the effectiveness of the proposed method, examples in practice such as the diagnosis for the wind power test rigs and industrial fan system are provided with the prediction accuracies of 99.89% and 99.77%, respectively. In addition, the efficiency of other comparative baseline approaches such as the deep belief network and support vector machine (SVM) is evaluated. In conclusion, the proposed intelligent diagnosis method based on multi-sensor data-fusion and CNN shows higher prediction accuracy and more obvious visualization clustering effects.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2019.2928346</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2883-4018</orcidid><orcidid>https://orcid.org/0000-0001-5333-0829</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2020-06, Vol.69 (6), p.2648-2657
issn 0018-9456
1557-9662
language eng
recordid cdi_proquest_journals_2402495602
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Belief networks
Clustering
Color imagery
Color-image
Computer vision
Convolution
convolutional neural network (CNN)
Data integration
Data models
Deep learning
Fault diagnosis
Feature extraction
Image enhancement
Image processing
intelligent diagnosis
Kernel
multi-sensor data fusion
Multisensor fusion
Performance evaluation
Sensors
Support vector machines
Test equipment
Vibrations
Wind power
title An Enhanced Intelligent Diagnosis Method Based on Multi-Sensor Image Fusion via Improved Deep Learning Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T17%3A57%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Enhanced%20Intelligent%20Diagnosis%20Method%20Based%20on%20Multi-Sensor%20Image%20Fusion%20via%20Improved%20Deep%20Learning%20Network&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Wang,%20Huaqing&rft.date=2020-06-01&rft.volume=69&rft.issue=6&rft.spage=2648&rft.epage=2657&rft.pages=2648-2657&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2019.2928346&rft_dat=%3Cproquest_RIE%3E2402495602%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2402495602&rft_id=info:pmid/&rft_ieee_id=8760507&rfr_iscdi=true