Black Phosphorus/Hollow Porous Carbon for High Rate Performance Lithium‐Ion Battery

Black phosphorus (BP) has received wide attention due to its high theoretical capacity (2596 mAh g−1) and good electron mobility, but its cyclic stability is poor. Meanwhile, it can be complementary to carbon material, which has low theoretical capacity but good cycle stability. In this work, we use...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemElectroChem 2020-05, Vol.7 (9), p.2184-2189
Hauptverfasser: Zhou, Shijie, Li, Jia, Fu, Licai, Zhu, Jiajun, Yang, Wulin, Li, Deyi, Zhou, Lingping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2189
container_issue 9
container_start_page 2184
container_title ChemElectroChem
container_volume 7
creator Zhou, Shijie
Li, Jia
Fu, Licai
Zhu, Jiajun
Yang, Wulin
Li, Deyi
Zhou, Lingping
description Black phosphorus (BP) has received wide attention due to its high theoretical capacity (2596 mAh g−1) and good electron mobility, but its cyclic stability is poor. Meanwhile, it can be complementary to carbon material, which has low theoretical capacity but good cycle stability. In this work, we use solvothermal reaction to modify hard carbon materials with black phosphorous (BP). When used as anode material for lithium‐ion batteries, the composite will show a higher specific capacity, cyclic stability and rate performance. It shows a high reversible capacity of 350 mAh g−1 after 1000 cycles at 1000 mA g−1 current density. But for pure carbon, it only shows a general reversible capacity of 180 mAh g−1. Here, the lower content of black phosphorous and the use of hard carbon materials make the material more economically advantageous. And it can be used as an ideal material for cycling at high currents in the future. A joint effort: Black phosphorus is supported on porous carbon in a bonded form through a simple solvothermal reactions. The resulting composites are far superior to pure carbon in terms of rate and cycle performance in Li‐ion batteries. Its economic applicability is also higher than that of phosphorus‐based materials.
doi_str_mv 10.1002/celc.202000525
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2402359553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2402359553</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3545-c876e2c168d30df0d9d2bf3c36daed124dce2268757a81f2b09c14f7817ca36b3</originalsourceid><addsrcrecordid>eNqFkMtKw0AUhgdRsNRuXQ-4TjuXzCRZ2lBtIWARux4mczGpaafOJJTu-gg-o09iSkXduTo_h-8_Bz4AbjEaY4TIRJlGjQkiCCFG2AUYEJzxCBHML__kazAKYd0zGCNGUz4Aq2kj1RtcVi7sKue7MJm7pnF7uHTedQHm0pduC63zcF6_VvBZtgYuje8XG7lVBhZ1W9Xd5vP4sei5qWxb4w834MrKJpjR9xyC1cPsJZ9HxdPjIr8vIkVZzCKVJtwQhXmqKdIW6UyT0lJFuZZGYxJrZQjhacISmWJLSpQpHNskxYmSlJd0CO7Od3fevXcmtGLtOr_tXwoSI0JZxhjtqfGZUt6F4I0VO19vpD8IjMTJnjjZEz_2-kJ2Luzrxhz-oUU-K_Lf7heWx3PV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2402359553</pqid></control><display><type>article</type><title>Black Phosphorus/Hollow Porous Carbon for High Rate Performance Lithium‐Ion Battery</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhou, Shijie ; Li, Jia ; Fu, Licai ; Zhu, Jiajun ; Yang, Wulin ; Li, Deyi ; Zhou, Lingping</creator><creatorcontrib>Zhou, Shijie ; Li, Jia ; Fu, Licai ; Zhu, Jiajun ; Yang, Wulin ; Li, Deyi ; Zhou, Lingping</creatorcontrib><description>Black phosphorus (BP) has received wide attention due to its high theoretical capacity (2596 mAh g−1) and good electron mobility, but its cyclic stability is poor. Meanwhile, it can be complementary to carbon material, which has low theoretical capacity but good cycle stability. In this work, we use solvothermal reaction to modify hard carbon materials with black phosphorous (BP). When used as anode material for lithium‐ion batteries, the composite will show a higher specific capacity, cyclic stability and rate performance. It shows a high reversible capacity of 350 mAh g−1 after 1000 cycles at 1000 mA g−1 current density. But for pure carbon, it only shows a general reversible capacity of 180 mAh g−1. Here, the lower content of black phosphorous and the use of hard carbon materials make the material more economically advantageous. And it can be used as an ideal material for cycling at high currents in the future. A joint effort: Black phosphorus is supported on porous carbon in a bonded form through a simple solvothermal reactions. The resulting composites are far superior to pure carbon in terms of rate and cycle performance in Li‐ion batteries. Its economic applicability is also higher than that of phosphorus‐based materials.</description><identifier>ISSN: 2196-0216</identifier><identifier>EISSN: 2196-0216</identifier><identifier>DOI: 10.1002/celc.202000525</identifier><language>eng</language><publisher>Weinheim: John Wiley &amp; Sons, Inc</publisher><subject>Anodes ; black phosphorus ; Carbon ; Electrode materials ; Electron mobility ; high rate performance ; hollow porous carbon ; Lithium-ion batteries ; lithium-ion battery ; Phosphorus ; Stability</subject><ispartof>ChemElectroChem, 2020-05, Vol.7 (9), p.2184-2189</ispartof><rights>2020 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3545-c876e2c168d30df0d9d2bf3c36daed124dce2268757a81f2b09c14f7817ca36b3</citedby><cites>FETCH-LOGICAL-c3545-c876e2c168d30df0d9d2bf3c36daed124dce2268757a81f2b09c14f7817ca36b3</cites><orcidid>0000-0001-9219-9720</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcelc.202000525$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcelc.202000525$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Zhou, Shijie</creatorcontrib><creatorcontrib>Li, Jia</creatorcontrib><creatorcontrib>Fu, Licai</creatorcontrib><creatorcontrib>Zhu, Jiajun</creatorcontrib><creatorcontrib>Yang, Wulin</creatorcontrib><creatorcontrib>Li, Deyi</creatorcontrib><creatorcontrib>Zhou, Lingping</creatorcontrib><title>Black Phosphorus/Hollow Porous Carbon for High Rate Performance Lithium‐Ion Battery</title><title>ChemElectroChem</title><description>Black phosphorus (BP) has received wide attention due to its high theoretical capacity (2596 mAh g−1) and good electron mobility, but its cyclic stability is poor. Meanwhile, it can be complementary to carbon material, which has low theoretical capacity but good cycle stability. In this work, we use solvothermal reaction to modify hard carbon materials with black phosphorous (BP). When used as anode material for lithium‐ion batteries, the composite will show a higher specific capacity, cyclic stability and rate performance. It shows a high reversible capacity of 350 mAh g−1 after 1000 cycles at 1000 mA g−1 current density. But for pure carbon, it only shows a general reversible capacity of 180 mAh g−1. Here, the lower content of black phosphorous and the use of hard carbon materials make the material more economically advantageous. And it can be used as an ideal material for cycling at high currents in the future. A joint effort: Black phosphorus is supported on porous carbon in a bonded form through a simple solvothermal reactions. The resulting composites are far superior to pure carbon in terms of rate and cycle performance in Li‐ion batteries. Its economic applicability is also higher than that of phosphorus‐based materials.</description><subject>Anodes</subject><subject>black phosphorus</subject><subject>Carbon</subject><subject>Electrode materials</subject><subject>Electron mobility</subject><subject>high rate performance</subject><subject>hollow porous carbon</subject><subject>Lithium-ion batteries</subject><subject>lithium-ion battery</subject><subject>Phosphorus</subject><subject>Stability</subject><issn>2196-0216</issn><issn>2196-0216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKw0AUhgdRsNRuXQ-4TjuXzCRZ2lBtIWARux4mczGpaafOJJTu-gg-o09iSkXduTo_h-8_Bz4AbjEaY4TIRJlGjQkiCCFG2AUYEJzxCBHML__kazAKYd0zGCNGUz4Aq2kj1RtcVi7sKue7MJm7pnF7uHTedQHm0pduC63zcF6_VvBZtgYuje8XG7lVBhZ1W9Xd5vP4sei5qWxb4w834MrKJpjR9xyC1cPsJZ9HxdPjIr8vIkVZzCKVJtwQhXmqKdIW6UyT0lJFuZZGYxJrZQjhacISmWJLSpQpHNskxYmSlJd0CO7Od3fevXcmtGLtOr_tXwoSI0JZxhjtqfGZUt6F4I0VO19vpD8IjMTJnjjZEz_2-kJ2Luzrxhz-oUU-K_Lf7heWx3PV</recordid><startdate>20200504</startdate><enddate>20200504</enddate><creator>Zhou, Shijie</creator><creator>Li, Jia</creator><creator>Fu, Licai</creator><creator>Zhu, Jiajun</creator><creator>Yang, Wulin</creator><creator>Li, Deyi</creator><creator>Zhou, Lingping</creator><general>John Wiley &amp; Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-9219-9720</orcidid></search><sort><creationdate>20200504</creationdate><title>Black Phosphorus/Hollow Porous Carbon for High Rate Performance Lithium‐Ion Battery</title><author>Zhou, Shijie ; Li, Jia ; Fu, Licai ; Zhu, Jiajun ; Yang, Wulin ; Li, Deyi ; Zhou, Lingping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3545-c876e2c168d30df0d9d2bf3c36daed124dce2268757a81f2b09c14f7817ca36b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anodes</topic><topic>black phosphorus</topic><topic>Carbon</topic><topic>Electrode materials</topic><topic>Electron mobility</topic><topic>high rate performance</topic><topic>hollow porous carbon</topic><topic>Lithium-ion batteries</topic><topic>lithium-ion battery</topic><topic>Phosphorus</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Shijie</creatorcontrib><creatorcontrib>Li, Jia</creatorcontrib><creatorcontrib>Fu, Licai</creatorcontrib><creatorcontrib>Zhu, Jiajun</creatorcontrib><creatorcontrib>Yang, Wulin</creatorcontrib><creatorcontrib>Li, Deyi</creatorcontrib><creatorcontrib>Zhou, Lingping</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>ChemElectroChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Shijie</au><au>Li, Jia</au><au>Fu, Licai</au><au>Zhu, Jiajun</au><au>Yang, Wulin</au><au>Li, Deyi</au><au>Zhou, Lingping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Black Phosphorus/Hollow Porous Carbon for High Rate Performance Lithium‐Ion Battery</atitle><jtitle>ChemElectroChem</jtitle><date>2020-05-04</date><risdate>2020</risdate><volume>7</volume><issue>9</issue><spage>2184</spage><epage>2189</epage><pages>2184-2189</pages><issn>2196-0216</issn><eissn>2196-0216</eissn><abstract>Black phosphorus (BP) has received wide attention due to its high theoretical capacity (2596 mAh g−1) and good electron mobility, but its cyclic stability is poor. Meanwhile, it can be complementary to carbon material, which has low theoretical capacity but good cycle stability. In this work, we use solvothermal reaction to modify hard carbon materials with black phosphorous (BP). When used as anode material for lithium‐ion batteries, the composite will show a higher specific capacity, cyclic stability and rate performance. It shows a high reversible capacity of 350 mAh g−1 after 1000 cycles at 1000 mA g−1 current density. But for pure carbon, it only shows a general reversible capacity of 180 mAh g−1. Here, the lower content of black phosphorous and the use of hard carbon materials make the material more economically advantageous. And it can be used as an ideal material for cycling at high currents in the future. A joint effort: Black phosphorus is supported on porous carbon in a bonded form through a simple solvothermal reactions. The resulting composites are far superior to pure carbon in terms of rate and cycle performance in Li‐ion batteries. Its economic applicability is also higher than that of phosphorus‐based materials.</abstract><cop>Weinheim</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/celc.202000525</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-9219-9720</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2196-0216
ispartof ChemElectroChem, 2020-05, Vol.7 (9), p.2184-2189
issn 2196-0216
2196-0216
language eng
recordid cdi_proquest_journals_2402359553
source Wiley Online Library Journals Frontfile Complete
subjects Anodes
black phosphorus
Carbon
Electrode materials
Electron mobility
high rate performance
hollow porous carbon
Lithium-ion batteries
lithium-ion battery
Phosphorus
Stability
title Black Phosphorus/Hollow Porous Carbon for High Rate Performance Lithium‐Ion Battery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T14%3A26%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Black%20Phosphorus/Hollow%20Porous%20Carbon%20for%20High%20Rate%20Performance%20Lithium%E2%80%90Ion%20Battery&rft.jtitle=ChemElectroChem&rft.au=Zhou,%20Shijie&rft.date=2020-05-04&rft.volume=7&rft.issue=9&rft.spage=2184&rft.epage=2189&rft.pages=2184-2189&rft.issn=2196-0216&rft.eissn=2196-0216&rft_id=info:doi/10.1002/celc.202000525&rft_dat=%3Cproquest_cross%3E2402359553%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2402359553&rft_id=info:pmid/&rfr_iscdi=true