Processing of Keyhole Depth Measurement Data during Laser Beam Micro Welding
Analysing the quality of weld seams is still a challenging task. An optical inspection of the surface is giving limited information about the shape and depth of the weld seam. An application for laser beam welding with high demands regarding the weld depth consistency is the electrical contacting of...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Institution of Mechanical Engineers. Part L, Journal of materials, design and applications Journal of materials, design and applications, 2020-05, Vol.234 (5), p.722-731 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Analysing the quality of weld seams is still a challenging task. An optical inspection of the surface is giving limited information about the shape and depth of the weld seam. An application for laser beam welding with high demands regarding the weld depth consistency is the electrical contacting of battery cells. The batteries themselves have a limited terminal or case thickness that must not be penetrated during the welding process to avoid leakage or damage to the cell. That leads to a minimum weld depth to ensure the electrical functionality, and a maximum weld depth indicated by the case thickness. In such applications, a destructive analysis is not suitable which leads to the demand for a non-destructive measurement during the process. Using a coaxial, interferometric measurement setup, the keyhole depth during the deep penetration welding is measureable. For a keyhole with a depth of a couple of millimetres, such a system is commercially available. In micro scale, however, these systems are facing several challenges such as scanning systems, small spot diameters of a few tens of micrometres and narrow keyholes. This study contains an investigation of an interferometric measurement of the keyhole depth and the suitability for laser micro welding. Therefore, the data processing of the achieved measurements is investigated, and the results are compared with the depth measurement of metallographic analysed samples. Stainless steel is used to investigate the behaviour and the stability of developed data processing strategy and the resulting depth values. |
---|---|
ISSN: | 1464-4207 2041-3076 |
DOI: | 10.1177/1464420720916759 |