Noninvasive Monitoring of the Response of Human Lungs to Low‐Dose Lipopolysaccharide Inhalation Challenge Using MRI: A Feasibility Study
Background Development of antiinflammatory drugs for lung diseases demands novel methods for noninvasive assessment of inflammatory processes in the lung. Purpose To investigate the feasibility of hyperpolarized 129Xe MRI, 1H T1 time mapping, and dynamic contrast‐enhanced (DCE) perfusion MRI for mon...
Gespeichert in:
Veröffentlicht in: | Journal of magnetic resonance imaging 2020-06, Vol.51 (6), p.1669-1676 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1676 |
---|---|
container_issue | 6 |
container_start_page | 1669 |
container_title | Journal of magnetic resonance imaging |
container_volume | 51 |
creator | Kern, Agilo L. Biller, Heike Klimeš, Filip Voskrebenzev, Andreas Gutberlet, Marcel Renne, Julius Müller, Meike Holz, Olaf Wacker, Frank Hohlfeld, Jens M. Vogel‐Claussen, Jens |
description | Background
Development of antiinflammatory drugs for lung diseases demands novel methods for noninvasive assessment of inflammatory processes in the lung.
Purpose
To investigate the feasibility of hyperpolarized 129Xe MRI, 1H T1 time mapping, and dynamic contrast‐enhanced (DCE) perfusion MRI for monitoring the response of human lungs to low‐dose inhaled lipopolysaccharide (LPS) challenge compared to inflammatory cell counts from induced‐sputum analysis.
Study Type
Prospective feasibility study.
Population
Ten healthy volunteers underwent MRI before and 6 hours after inhaled LPS challenge with subsequent induced‐sputum collection.
Field Strength/Sequences
1.5T/hyperpolarized 129Xe MRI: Interleaved multiecho imaging of dissolved and gas phase, ventilation imaging, dissolved‐phase spectroscopy, and chemical shift saturation recovery spectroscopy. 1H MRI: Inversion recovery fast low‐angle shot imaging for T1 mapping, time‐resolved angiography with stochastic trajectories for DCE MRI.
Assessment
Dissolved‐phase ratios of 129Xe in red blood cells (RBC), tissue/plasma (TP) and gas phase (GP), ventilation defect percentage, septal wall thickness, surface‐to‐volume ratio, capillary transit time, lineshape parameters in dissolved‐phase spectroscopy, 1H T1 time, blood volume, flow, and mean transit time were determined and compared to cell counts.
Statistical Tests
Wilcoxon signed‐rank test, Pearson correlation.
Results
The percentage of neutrophils in sputum was markedly increased after LPS inhalation compared to baseline, P = 0.002. The group median RBC‐TP ratio was significantly reduced from 0.40 to 0.31, P = 0.004, and 1H T1 was significantly elevated from 1157.6 msec to 1187.8 msec after LPS challenge, P = 0.027. DCE MRI exhibited no significant changes in blood volume, P = 0.64, flow, P = 0.17, and mean transit time, P = 0.11.
Data Conclusion
Hyperpolarized 129Xe dissolved‐phase MRI and 1H T1 mapping may provide biomarkers for noninvasive assessment of the response of human lungs to LPS inhalation. By its specificity to the alveolar region, hyperpolarized 129Xe MRI together with 1H T1 mapping adds value to sputum analysis.
Level of Evidence: 1
Technical Efficacy Stage: 2
J. Magn. Reson. Imaging 2020;51:1669–1676. |
doi_str_mv | 10.1002/jmri.27000 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2401718426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2401718426</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3930-2b1df8fc538ebdb0a06b7934a6456b2299bb932b45a17abb4d81e31d89428e783</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMo3jc-gATcCdVcekncyXgbqQpe1iVp05kMnaQmrdKda1c-o09ixlGXrs5_OB_fgR-APYyOMELkeDZ3-ohkCKEVsIkTQiKSsHQ1ZJTQCDOUbYAt72cB4DxO1sEGxRnhGPNN8H5rjTYvwusXBW9C7qzTZgJtDbupgvfKt9Z4tdiv-rkwMO_NxMPOwty-fr59nNlwzHVrW9sMXpTlVDhdKTg2U9GITlsDRyE1ykwUfPIL9c39-ASewgsVnkrd6G6AD11fDTtgrRaNV7s_cxs8XZw_jq6i_O5yPDrNo5JyiiIicVWzukwoU7KSSKBUZpzGIo2TVBLCuZScEhknAmdCyrhiWFFcMR4TpjJGt8HB0ts6-9wr3xUz2zsTXhYkRjjDLCZpoA6XVOms907VRev0XLihwKhY1F4sai--aw_w_o-yl3NV_aG_PQcAL4FX3ajhH1VxHepZSr8Afl2PFQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2401718426</pqid></control><display><type>article</type><title>Noninvasive Monitoring of the Response of Human Lungs to Low‐Dose Lipopolysaccharide Inhalation Challenge Using MRI: A Feasibility Study</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kern, Agilo L. ; Biller, Heike ; Klimeš, Filip ; Voskrebenzev, Andreas ; Gutberlet, Marcel ; Renne, Julius ; Müller, Meike ; Holz, Olaf ; Wacker, Frank ; Hohlfeld, Jens M. ; Vogel‐Claussen, Jens</creator><creatorcontrib>Kern, Agilo L. ; Biller, Heike ; Klimeš, Filip ; Voskrebenzev, Andreas ; Gutberlet, Marcel ; Renne, Julius ; Müller, Meike ; Holz, Olaf ; Wacker, Frank ; Hohlfeld, Jens M. ; Vogel‐Claussen, Jens</creatorcontrib><description>Background
Development of antiinflammatory drugs for lung diseases demands novel methods for noninvasive assessment of inflammatory processes in the lung.
Purpose
To investigate the feasibility of hyperpolarized 129Xe MRI, 1H T1 time mapping, and dynamic contrast‐enhanced (DCE) perfusion MRI for monitoring the response of human lungs to low‐dose inhaled lipopolysaccharide (LPS) challenge compared to inflammatory cell counts from induced‐sputum analysis.
Study Type
Prospective feasibility study.
Population
Ten healthy volunteers underwent MRI before and 6 hours after inhaled LPS challenge with subsequent induced‐sputum collection.
Field Strength/Sequences
1.5T/hyperpolarized 129Xe MRI: Interleaved multiecho imaging of dissolved and gas phase, ventilation imaging, dissolved‐phase spectroscopy, and chemical shift saturation recovery spectroscopy. 1H MRI: Inversion recovery fast low‐angle shot imaging for T1 mapping, time‐resolved angiography with stochastic trajectories for DCE MRI.
Assessment
Dissolved‐phase ratios of 129Xe in red blood cells (RBC), tissue/plasma (TP) and gas phase (GP), ventilation defect percentage, septal wall thickness, surface‐to‐volume ratio, capillary transit time, lineshape parameters in dissolved‐phase spectroscopy, 1H T1 time, blood volume, flow, and mean transit time were determined and compared to cell counts.
Statistical Tests
Wilcoxon signed‐rank test, Pearson correlation.
Results
The percentage of neutrophils in sputum was markedly increased after LPS inhalation compared to baseline, P = 0.002. The group median RBC‐TP ratio was significantly reduced from 0.40 to 0.31, P = 0.004, and 1H T1 was significantly elevated from 1157.6 msec to 1187.8 msec after LPS challenge, P = 0.027. DCE MRI exhibited no significant changes in blood volume, P = 0.64, flow, P = 0.17, and mean transit time, P = 0.11.
Data Conclusion
Hyperpolarized 129Xe dissolved‐phase MRI and 1H T1 mapping may provide biomarkers for noninvasive assessment of the response of human lungs to LPS inhalation. By its specificity to the alveolar region, hyperpolarized 129Xe MRI together with 1H T1 mapping adds value to sputum analysis.
Level of Evidence: 1
Technical Efficacy Stage: 2
J. Magn. Reson. Imaging 2020;51:1669–1676.</description><identifier>ISSN: 1053-1807</identifier><identifier>EISSN: 1522-2586</identifier><identifier>DOI: 10.1002/jmri.27000</identifier><identifier>PMID: 31729119</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>129Xe MRI ; Administration, Inhalation ; Alveoli ; Angiography ; Anti-inflammatory agents ; Biomarkers ; Blood ; Blood volume ; Chemical equilibrium ; dissolved phase ; Drug development ; Erythrocytes ; Feasibility Studies ; Field strength ; Humans ; Inflammation ; Inhalation ; Leukocytes (neutrophilic) ; lipopolysaccharide ; Lipopolysaccharides ; Lung - diagnostic imaging ; Lung diseases ; Lungs ; Magnetic Resonance Imaging ; Mapping ; Medical imaging ; Monitoring ; Perfusion ; Population studies ; Prospective Studies ; Rank tests ; Recovery ; Respiration ; Spectroscopy ; Spectrum analysis ; Sputum ; Statistical analysis ; Statistical tests ; T1 mapping ; Trajectory analysis ; Transit time ; Vapor phases ; Ventilation ; Wall thickness ; Xenon 129 ; Xenon Isotopes</subject><ispartof>Journal of magnetic resonance imaging, 2020-06, Vol.51 (6), p.1669-1676</ispartof><rights>2019 The Authors. published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.</rights><rights>2019 The Authors. Journal of Magnetic Resonance Imaging published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.</rights><rights>2019. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3930-2b1df8fc538ebdb0a06b7934a6456b2299bb932b45a17abb4d81e31d89428e783</citedby><cites>FETCH-LOGICAL-c3930-2b1df8fc538ebdb0a06b7934a6456b2299bb932b45a17abb4d81e31d89428e783</cites><orcidid>0000-0003-4157-9808 ; 0000-0003-3727-8180 ; 0000-0001-5595-6948</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjmri.27000$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjmri.27000$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31729119$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kern, Agilo L.</creatorcontrib><creatorcontrib>Biller, Heike</creatorcontrib><creatorcontrib>Klimeš, Filip</creatorcontrib><creatorcontrib>Voskrebenzev, Andreas</creatorcontrib><creatorcontrib>Gutberlet, Marcel</creatorcontrib><creatorcontrib>Renne, Julius</creatorcontrib><creatorcontrib>Müller, Meike</creatorcontrib><creatorcontrib>Holz, Olaf</creatorcontrib><creatorcontrib>Wacker, Frank</creatorcontrib><creatorcontrib>Hohlfeld, Jens M.</creatorcontrib><creatorcontrib>Vogel‐Claussen, Jens</creatorcontrib><title>Noninvasive Monitoring of the Response of Human Lungs to Low‐Dose Lipopolysaccharide Inhalation Challenge Using MRI: A Feasibility Study</title><title>Journal of magnetic resonance imaging</title><addtitle>J Magn Reson Imaging</addtitle><description>Background
Development of antiinflammatory drugs for lung diseases demands novel methods for noninvasive assessment of inflammatory processes in the lung.
Purpose
To investigate the feasibility of hyperpolarized 129Xe MRI, 1H T1 time mapping, and dynamic contrast‐enhanced (DCE) perfusion MRI for monitoring the response of human lungs to low‐dose inhaled lipopolysaccharide (LPS) challenge compared to inflammatory cell counts from induced‐sputum analysis.
Study Type
Prospective feasibility study.
Population
Ten healthy volunteers underwent MRI before and 6 hours after inhaled LPS challenge with subsequent induced‐sputum collection.
Field Strength/Sequences
1.5T/hyperpolarized 129Xe MRI: Interleaved multiecho imaging of dissolved and gas phase, ventilation imaging, dissolved‐phase spectroscopy, and chemical shift saturation recovery spectroscopy. 1H MRI: Inversion recovery fast low‐angle shot imaging for T1 mapping, time‐resolved angiography with stochastic trajectories for DCE MRI.
Assessment
Dissolved‐phase ratios of 129Xe in red blood cells (RBC), tissue/plasma (TP) and gas phase (GP), ventilation defect percentage, septal wall thickness, surface‐to‐volume ratio, capillary transit time, lineshape parameters in dissolved‐phase spectroscopy, 1H T1 time, blood volume, flow, and mean transit time were determined and compared to cell counts.
Statistical Tests
Wilcoxon signed‐rank test, Pearson correlation.
Results
The percentage of neutrophils in sputum was markedly increased after LPS inhalation compared to baseline, P = 0.002. The group median RBC‐TP ratio was significantly reduced from 0.40 to 0.31, P = 0.004, and 1H T1 was significantly elevated from 1157.6 msec to 1187.8 msec after LPS challenge, P = 0.027. DCE MRI exhibited no significant changes in blood volume, P = 0.64, flow, P = 0.17, and mean transit time, P = 0.11.
Data Conclusion
Hyperpolarized 129Xe dissolved‐phase MRI and 1H T1 mapping may provide biomarkers for noninvasive assessment of the response of human lungs to LPS inhalation. By its specificity to the alveolar region, hyperpolarized 129Xe MRI together with 1H T1 mapping adds value to sputum analysis.
Level of Evidence: 1
Technical Efficacy Stage: 2
J. Magn. Reson. Imaging 2020;51:1669–1676.</description><subject>129Xe MRI</subject><subject>Administration, Inhalation</subject><subject>Alveoli</subject><subject>Angiography</subject><subject>Anti-inflammatory agents</subject><subject>Biomarkers</subject><subject>Blood</subject><subject>Blood volume</subject><subject>Chemical equilibrium</subject><subject>dissolved phase</subject><subject>Drug development</subject><subject>Erythrocytes</subject><subject>Feasibility Studies</subject><subject>Field strength</subject><subject>Humans</subject><subject>Inflammation</subject><subject>Inhalation</subject><subject>Leukocytes (neutrophilic)</subject><subject>lipopolysaccharide</subject><subject>Lipopolysaccharides</subject><subject>Lung - diagnostic imaging</subject><subject>Lung diseases</subject><subject>Lungs</subject><subject>Magnetic Resonance Imaging</subject><subject>Mapping</subject><subject>Medical imaging</subject><subject>Monitoring</subject><subject>Perfusion</subject><subject>Population studies</subject><subject>Prospective Studies</subject><subject>Rank tests</subject><subject>Recovery</subject><subject>Respiration</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Sputum</subject><subject>Statistical analysis</subject><subject>Statistical tests</subject><subject>T1 mapping</subject><subject>Trajectory analysis</subject><subject>Transit time</subject><subject>Vapor phases</subject><subject>Ventilation</subject><subject>Wall thickness</subject><subject>Xenon 129</subject><subject>Xenon Isotopes</subject><issn>1053-1807</issn><issn>1522-2586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp9kMtKxDAUhoMo3jc-gATcCdVcekncyXgbqQpe1iVp05kMnaQmrdKda1c-o09ixlGXrs5_OB_fgR-APYyOMELkeDZ3-ohkCKEVsIkTQiKSsHQ1ZJTQCDOUbYAt72cB4DxO1sEGxRnhGPNN8H5rjTYvwusXBW9C7qzTZgJtDbupgvfKt9Z4tdiv-rkwMO_NxMPOwty-fr59nNlwzHVrW9sMXpTlVDhdKTg2U9GITlsDRyE1ykwUfPIL9c39-ASewgsVnkrd6G6AD11fDTtgrRaNV7s_cxs8XZw_jq6i_O5yPDrNo5JyiiIicVWzukwoU7KSSKBUZpzGIo2TVBLCuZScEhknAmdCyrhiWFFcMR4TpjJGt8HB0ts6-9wr3xUz2zsTXhYkRjjDLCZpoA6XVOms907VRev0XLihwKhY1F4sai--aw_w_o-yl3NV_aG_PQcAL4FX3ajhH1VxHepZSr8Afl2PFQ</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Kern, Agilo L.</creator><creator>Biller, Heike</creator><creator>Klimeš, Filip</creator><creator>Voskrebenzev, Andreas</creator><creator>Gutberlet, Marcel</creator><creator>Renne, Julius</creator><creator>Müller, Meike</creator><creator>Holz, Olaf</creator><creator>Wacker, Frank</creator><creator>Hohlfeld, Jens M.</creator><creator>Vogel‐Claussen, Jens</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0003-4157-9808</orcidid><orcidid>https://orcid.org/0000-0003-3727-8180</orcidid><orcidid>https://orcid.org/0000-0001-5595-6948</orcidid></search><sort><creationdate>202006</creationdate><title>Noninvasive Monitoring of the Response of Human Lungs to Low‐Dose Lipopolysaccharide Inhalation Challenge Using MRI: A Feasibility Study</title><author>Kern, Agilo L. ; Biller, Heike ; Klimeš, Filip ; Voskrebenzev, Andreas ; Gutberlet, Marcel ; Renne, Julius ; Müller, Meike ; Holz, Olaf ; Wacker, Frank ; Hohlfeld, Jens M. ; Vogel‐Claussen, Jens</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3930-2b1df8fc538ebdb0a06b7934a6456b2299bb932b45a17abb4d81e31d89428e783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>129Xe MRI</topic><topic>Administration, Inhalation</topic><topic>Alveoli</topic><topic>Angiography</topic><topic>Anti-inflammatory agents</topic><topic>Biomarkers</topic><topic>Blood</topic><topic>Blood volume</topic><topic>Chemical equilibrium</topic><topic>dissolved phase</topic><topic>Drug development</topic><topic>Erythrocytes</topic><topic>Feasibility Studies</topic><topic>Field strength</topic><topic>Humans</topic><topic>Inflammation</topic><topic>Inhalation</topic><topic>Leukocytes (neutrophilic)</topic><topic>lipopolysaccharide</topic><topic>Lipopolysaccharides</topic><topic>Lung - diagnostic imaging</topic><topic>Lung diseases</topic><topic>Lungs</topic><topic>Magnetic Resonance Imaging</topic><topic>Mapping</topic><topic>Medical imaging</topic><topic>Monitoring</topic><topic>Perfusion</topic><topic>Population studies</topic><topic>Prospective Studies</topic><topic>Rank tests</topic><topic>Recovery</topic><topic>Respiration</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Sputum</topic><topic>Statistical analysis</topic><topic>Statistical tests</topic><topic>T1 mapping</topic><topic>Trajectory analysis</topic><topic>Transit time</topic><topic>Vapor phases</topic><topic>Ventilation</topic><topic>Wall thickness</topic><topic>Xenon 129</topic><topic>Xenon Isotopes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kern, Agilo L.</creatorcontrib><creatorcontrib>Biller, Heike</creatorcontrib><creatorcontrib>Klimeš, Filip</creatorcontrib><creatorcontrib>Voskrebenzev, Andreas</creatorcontrib><creatorcontrib>Gutberlet, Marcel</creatorcontrib><creatorcontrib>Renne, Julius</creatorcontrib><creatorcontrib>Müller, Meike</creatorcontrib><creatorcontrib>Holz, Olaf</creatorcontrib><creatorcontrib>Wacker, Frank</creatorcontrib><creatorcontrib>Hohlfeld, Jens M.</creatorcontrib><creatorcontrib>Vogel‐Claussen, Jens</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of magnetic resonance imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kern, Agilo L.</au><au>Biller, Heike</au><au>Klimeš, Filip</au><au>Voskrebenzev, Andreas</au><au>Gutberlet, Marcel</au><au>Renne, Julius</au><au>Müller, Meike</au><au>Holz, Olaf</au><au>Wacker, Frank</au><au>Hohlfeld, Jens M.</au><au>Vogel‐Claussen, Jens</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Noninvasive Monitoring of the Response of Human Lungs to Low‐Dose Lipopolysaccharide Inhalation Challenge Using MRI: A Feasibility Study</atitle><jtitle>Journal of magnetic resonance imaging</jtitle><addtitle>J Magn Reson Imaging</addtitle><date>2020-06</date><risdate>2020</risdate><volume>51</volume><issue>6</issue><spage>1669</spage><epage>1676</epage><pages>1669-1676</pages><issn>1053-1807</issn><eissn>1522-2586</eissn><abstract>Background
Development of antiinflammatory drugs for lung diseases demands novel methods for noninvasive assessment of inflammatory processes in the lung.
Purpose
To investigate the feasibility of hyperpolarized 129Xe MRI, 1H T1 time mapping, and dynamic contrast‐enhanced (DCE) perfusion MRI for monitoring the response of human lungs to low‐dose inhaled lipopolysaccharide (LPS) challenge compared to inflammatory cell counts from induced‐sputum analysis.
Study Type
Prospective feasibility study.
Population
Ten healthy volunteers underwent MRI before and 6 hours after inhaled LPS challenge with subsequent induced‐sputum collection.
Field Strength/Sequences
1.5T/hyperpolarized 129Xe MRI: Interleaved multiecho imaging of dissolved and gas phase, ventilation imaging, dissolved‐phase spectroscopy, and chemical shift saturation recovery spectroscopy. 1H MRI: Inversion recovery fast low‐angle shot imaging for T1 mapping, time‐resolved angiography with stochastic trajectories for DCE MRI.
Assessment
Dissolved‐phase ratios of 129Xe in red blood cells (RBC), tissue/plasma (TP) and gas phase (GP), ventilation defect percentage, septal wall thickness, surface‐to‐volume ratio, capillary transit time, lineshape parameters in dissolved‐phase spectroscopy, 1H T1 time, blood volume, flow, and mean transit time were determined and compared to cell counts.
Statistical Tests
Wilcoxon signed‐rank test, Pearson correlation.
Results
The percentage of neutrophils in sputum was markedly increased after LPS inhalation compared to baseline, P = 0.002. The group median RBC‐TP ratio was significantly reduced from 0.40 to 0.31, P = 0.004, and 1H T1 was significantly elevated from 1157.6 msec to 1187.8 msec after LPS challenge, P = 0.027. DCE MRI exhibited no significant changes in blood volume, P = 0.64, flow, P = 0.17, and mean transit time, P = 0.11.
Data Conclusion
Hyperpolarized 129Xe dissolved‐phase MRI and 1H T1 mapping may provide biomarkers for noninvasive assessment of the response of human lungs to LPS inhalation. By its specificity to the alveolar region, hyperpolarized 129Xe MRI together with 1H T1 mapping adds value to sputum analysis.
Level of Evidence: 1
Technical Efficacy Stage: 2
J. Magn. Reson. Imaging 2020;51:1669–1676.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>31729119</pmid><doi>10.1002/jmri.27000</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4157-9808</orcidid><orcidid>https://orcid.org/0000-0003-3727-8180</orcidid><orcidid>https://orcid.org/0000-0001-5595-6948</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-1807 |
ispartof | Journal of magnetic resonance imaging, 2020-06, Vol.51 (6), p.1669-1676 |
issn | 1053-1807 1522-2586 |
language | eng |
recordid | cdi_proquest_journals_2401718426 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | 129Xe MRI Administration, Inhalation Alveoli Angiography Anti-inflammatory agents Biomarkers Blood Blood volume Chemical equilibrium dissolved phase Drug development Erythrocytes Feasibility Studies Field strength Humans Inflammation Inhalation Leukocytes (neutrophilic) lipopolysaccharide Lipopolysaccharides Lung - diagnostic imaging Lung diseases Lungs Magnetic Resonance Imaging Mapping Medical imaging Monitoring Perfusion Population studies Prospective Studies Rank tests Recovery Respiration Spectroscopy Spectrum analysis Sputum Statistical analysis Statistical tests T1 mapping Trajectory analysis Transit time Vapor phases Ventilation Wall thickness Xenon 129 Xenon Isotopes |
title | Noninvasive Monitoring of the Response of Human Lungs to Low‐Dose Lipopolysaccharide Inhalation Challenge Using MRI: A Feasibility Study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T01%3A11%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Noninvasive%20Monitoring%20of%20the%20Response%20of%20Human%20Lungs%20to%20Low%E2%80%90Dose%20Lipopolysaccharide%20Inhalation%20Challenge%20Using%20MRI:%20A%20Feasibility%20Study&rft.jtitle=Journal%20of%20magnetic%20resonance%20imaging&rft.au=Kern,%20Agilo%20L.&rft.date=2020-06&rft.volume=51&rft.issue=6&rft.spage=1669&rft.epage=1676&rft.pages=1669-1676&rft.issn=1053-1807&rft.eissn=1522-2586&rft_id=info:doi/10.1002/jmri.27000&rft_dat=%3Cproquest_cross%3E2401718426%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2401718426&rft_id=info:pmid/31729119&rfr_iscdi=true |