Biological nitrogen fixation by alternative nitrogenases in terrestrial ecosystems: a review

Biological nitrogen fixation (BNF), a key reaction of the nitrogen cycle, is catalyzed by the enzyme nitrogenase. The best studied isoform of this metalloenzyme requires molybdenum (Mo) at its active center to reduce atmospheric dinitrogen (N₂) into bioavailable ammonium. The Mo-dependent nitrogenas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biogeochemistry 2020-05, Vol.149 (1), p.53-73
Hauptverfasser: Bellenger, J. P., Darnajoux, R., Zhang, X., Kraepiel, A. M. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 73
container_issue 1
container_start_page 53
container_title Biogeochemistry
container_volume 149
creator Bellenger, J. P.
Darnajoux, R.
Zhang, X.
Kraepiel, A. M. L.
description Biological nitrogen fixation (BNF), a key reaction of the nitrogen cycle, is catalyzed by the enzyme nitrogenase. The best studied isoform of this metalloenzyme requires molybdenum (Mo) at its active center to reduce atmospheric dinitrogen (N₂) into bioavailable ammonium. The Mo-dependent nitrogenase is found in all diazotrophs and is the only nitrogenase reported in diazotrophs that form N₂-fixing symbioses with higher plants. In addition to the canonical Mo nitrogenase, two alternative nitrogenases, which use either vanadium (V) or iron (Fe) instead of Mo are known to fix nitrogen. They have been identified in ecologically important groups including free-living bacteria in soils and freshwaters and as symbionts of certain cryptogamic covers. Despite the discovery of these alternative isoforms more than 40 years ago, BNF is still believed to primarily rely on Mo. Here, we review existing studies on alternative nitrogenases in terrestrial settings, spanning inland forests to coastal ecosystems. These studies show frequent Mo limitation of BNF, ubiquitous distribution of alternative nitrogenase genes and significant contributions of alternative nitrogenases to N₂ fixation in ecosystems ranging from the tropics to the subarctic. The effect of temperature on nitrogenase isoform activity and regulation is also discussed. We present recently developed methods for measuring alternative nitrogenase activity in the field and discuss the associated analytical challenges. Finally, we discuss how the enzymatic diversity of nitrogenase forces a re-examination of existing knowledge gaps and our understanding of BNF in nature.
doi_str_mv 10.1007/s10533-020-00666-7
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2401553775</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>48727893</jstor_id><sourcerecordid>48727893</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-3f95277c154499befa53032d23f11572e96030a52ef12392789f16ca5a78806c3</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWKt_QBAWPEcnmU2ye9RiVSgIouAtpGtSUrabmmzF_ntTV-rN0zDM-948HiHnDK4YgLpODAQiBQ4UQEpJ1QEZMaGQCibeDskImKwoFxKPyUlKSwCoFeCIPN_60IaFb0xbdL6PYWG7wvkv0_vQFfNtYdrexi6vn3YvMMmmwndFvkSb-ugzbJuQtqm3q3RKjpxpkz37nWPyOr17mTzQ2dP94-RmRptSsJ6iqwVXqmGiLOt6bp0RCMjfOTqWk3NbS0AwglvHONZcVbVjsjHCqKoC2eCYXA6-6xg-NjmHXoZNjtomzUtgQqBSIqv4oGpiSClap9fRr0zcagZ6150eutO5O_3TnVYZwgFKWdwtbPyz_pe6GKhl6kPc_ykrtQuP-A25yntr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2401553775</pqid></control><display><type>article</type><title>Biological nitrogen fixation by alternative nitrogenases in terrestrial ecosystems: a review</title><source>Jstor Complete Legacy</source><source>SpringerLink Journals</source><creator>Bellenger, J. P. ; Darnajoux, R. ; Zhang, X. ; Kraepiel, A. M. L.</creator><creatorcontrib>Bellenger, J. P. ; Darnajoux, R. ; Zhang, X. ; Kraepiel, A. M. L.</creatorcontrib><description>Biological nitrogen fixation (BNF), a key reaction of the nitrogen cycle, is catalyzed by the enzyme nitrogenase. The best studied isoform of this metalloenzyme requires molybdenum (Mo) at its active center to reduce atmospheric dinitrogen (N₂) into bioavailable ammonium. The Mo-dependent nitrogenase is found in all diazotrophs and is the only nitrogenase reported in diazotrophs that form N₂-fixing symbioses with higher plants. In addition to the canonical Mo nitrogenase, two alternative nitrogenases, which use either vanadium (V) or iron (Fe) instead of Mo are known to fix nitrogen. They have been identified in ecologically important groups including free-living bacteria in soils and freshwaters and as symbionts of certain cryptogamic covers. Despite the discovery of these alternative isoforms more than 40 years ago, BNF is still believed to primarily rely on Mo. Here, we review existing studies on alternative nitrogenases in terrestrial settings, spanning inland forests to coastal ecosystems. These studies show frequent Mo limitation of BNF, ubiquitous distribution of alternative nitrogenase genes and significant contributions of alternative nitrogenases to N₂ fixation in ecosystems ranging from the tropics to the subarctic. The effect of temperature on nitrogenase isoform activity and regulation is also discussed. We present recently developed methods for measuring alternative nitrogenase activity in the field and discuss the associated analytical challenges. Finally, we discuss how the enzymatic diversity of nitrogenase forces a re-examination of existing knowledge gaps and our understanding of BNF in nature.</description><identifier>ISSN: 0168-2563</identifier><identifier>EISSN: 1573-515X</identifier><identifier>DOI: 10.1007/s10533-020-00666-7</identifier><language>eng</language><publisher>Cham: Springer Science + Business Media</publisher><subject>Ammonium ; Ammonium compounds ; Bioavailability ; Biogeosciences ; Boreal ecosystems ; Coastal ecosystems ; Earth and Environmental Science ; Earth Sciences ; Ecosystems ; Environmental Chemistry ; Fresh water ; Genes ; Iron ; Isoforms ; Life Sciences ; Measurement methods ; Molybdenum ; Nitrogen ; Nitrogen cycle ; Nitrogen fixation ; Nitrogenase ; Nitrogenation ; ORIGINAL PAPERS ; Soil ; Soil bacteria ; Soil microorganisms ; Symbionts ; Symbiosis ; Temperature effects ; Terrestrial ecosystems ; Tropical environments ; Vanadium</subject><ispartof>Biogeochemistry, 2020-05, Vol.149 (1), p.53-73</ispartof><rights>Springer Nature Switzerland AG 2020</rights><rights>Springer Nature Switzerland AG 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-3f95277c154499befa53032d23f11572e96030a52ef12392789f16ca5a78806c3</citedby><cites>FETCH-LOGICAL-c451t-3f95277c154499befa53032d23f11572e96030a52ef12392789f16ca5a78806c3</cites><orcidid>0000-0001-6842-4561</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/48727893$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/48727893$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,27903,27904,41467,42536,51297,57995,58228</link.rule.ids></links><search><creatorcontrib>Bellenger, J. P.</creatorcontrib><creatorcontrib>Darnajoux, R.</creatorcontrib><creatorcontrib>Zhang, X.</creatorcontrib><creatorcontrib>Kraepiel, A. M. L.</creatorcontrib><title>Biological nitrogen fixation by alternative nitrogenases in terrestrial ecosystems: a review</title><title>Biogeochemistry</title><addtitle>Biogeochemistry</addtitle><description>Biological nitrogen fixation (BNF), a key reaction of the nitrogen cycle, is catalyzed by the enzyme nitrogenase. The best studied isoform of this metalloenzyme requires molybdenum (Mo) at its active center to reduce atmospheric dinitrogen (N₂) into bioavailable ammonium. The Mo-dependent nitrogenase is found in all diazotrophs and is the only nitrogenase reported in diazotrophs that form N₂-fixing symbioses with higher plants. In addition to the canonical Mo nitrogenase, two alternative nitrogenases, which use either vanadium (V) or iron (Fe) instead of Mo are known to fix nitrogen. They have been identified in ecologically important groups including free-living bacteria in soils and freshwaters and as symbionts of certain cryptogamic covers. Despite the discovery of these alternative isoforms more than 40 years ago, BNF is still believed to primarily rely on Mo. Here, we review existing studies on alternative nitrogenases in terrestrial settings, spanning inland forests to coastal ecosystems. These studies show frequent Mo limitation of BNF, ubiquitous distribution of alternative nitrogenase genes and significant contributions of alternative nitrogenases to N₂ fixation in ecosystems ranging from the tropics to the subarctic. The effect of temperature on nitrogenase isoform activity and regulation is also discussed. We present recently developed methods for measuring alternative nitrogenase activity in the field and discuss the associated analytical challenges. Finally, we discuss how the enzymatic diversity of nitrogenase forces a re-examination of existing knowledge gaps and our understanding of BNF in nature.</description><subject>Ammonium</subject><subject>Ammonium compounds</subject><subject>Bioavailability</subject><subject>Biogeosciences</subject><subject>Boreal ecosystems</subject><subject>Coastal ecosystems</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Ecosystems</subject><subject>Environmental Chemistry</subject><subject>Fresh water</subject><subject>Genes</subject><subject>Iron</subject><subject>Isoforms</subject><subject>Life Sciences</subject><subject>Measurement methods</subject><subject>Molybdenum</subject><subject>Nitrogen</subject><subject>Nitrogen cycle</subject><subject>Nitrogen fixation</subject><subject>Nitrogenase</subject><subject>Nitrogenation</subject><subject>ORIGINAL PAPERS</subject><subject>Soil</subject><subject>Soil bacteria</subject><subject>Soil microorganisms</subject><subject>Symbionts</subject><subject>Symbiosis</subject><subject>Temperature effects</subject><subject>Terrestrial ecosystems</subject><subject>Tropical environments</subject><subject>Vanadium</subject><issn>0168-2563</issn><issn>1573-515X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kEFLAzEQhYMoWKt_QBAWPEcnmU2ye9RiVSgIouAtpGtSUrabmmzF_ntTV-rN0zDM-948HiHnDK4YgLpODAQiBQ4UQEpJ1QEZMaGQCibeDskImKwoFxKPyUlKSwCoFeCIPN_60IaFb0xbdL6PYWG7wvkv0_vQFfNtYdrexi6vn3YvMMmmwndFvkSb-ugzbJuQtqm3q3RKjpxpkz37nWPyOr17mTzQ2dP94-RmRptSsJ6iqwVXqmGiLOt6bp0RCMjfOTqWk3NbS0AwglvHONZcVbVjsjHCqKoC2eCYXA6-6xg-NjmHXoZNjtomzUtgQqBSIqv4oGpiSClap9fRr0zcagZ6150eutO5O_3TnVYZwgFKWdwtbPyz_pe6GKhl6kPc_ykrtQuP-A25yntr</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Bellenger, J. P.</creator><creator>Darnajoux, R.</creator><creator>Zhang, X.</creator><creator>Kraepiel, A. M. L.</creator><general>Springer Science + Business Media</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>LK8</scope><scope>M0S</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-6842-4561</orcidid></search><sort><creationdate>20200501</creationdate><title>Biological nitrogen fixation by alternative nitrogenases in terrestrial ecosystems</title><author>Bellenger, J. P. ; Darnajoux, R. ; Zhang, X. ; Kraepiel, A. M. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-3f95277c154499befa53032d23f11572e96030a52ef12392789f16ca5a78806c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ammonium</topic><topic>Ammonium compounds</topic><topic>Bioavailability</topic><topic>Biogeosciences</topic><topic>Boreal ecosystems</topic><topic>Coastal ecosystems</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Ecosystems</topic><topic>Environmental Chemistry</topic><topic>Fresh water</topic><topic>Genes</topic><topic>Iron</topic><topic>Isoforms</topic><topic>Life Sciences</topic><topic>Measurement methods</topic><topic>Molybdenum</topic><topic>Nitrogen</topic><topic>Nitrogen cycle</topic><topic>Nitrogen fixation</topic><topic>Nitrogenase</topic><topic>Nitrogenation</topic><topic>ORIGINAL PAPERS</topic><topic>Soil</topic><topic>Soil bacteria</topic><topic>Soil microorganisms</topic><topic>Symbionts</topic><topic>Symbiosis</topic><topic>Temperature effects</topic><topic>Terrestrial ecosystems</topic><topic>Tropical environments</topic><topic>Vanadium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bellenger, J. P.</creatorcontrib><creatorcontrib>Darnajoux, R.</creatorcontrib><creatorcontrib>Zhang, X.</creatorcontrib><creatorcontrib>Kraepiel, A. M. L.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Water Resources Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Biogeochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bellenger, J. P.</au><au>Darnajoux, R.</au><au>Zhang, X.</au><au>Kraepiel, A. M. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biological nitrogen fixation by alternative nitrogenases in terrestrial ecosystems: a review</atitle><jtitle>Biogeochemistry</jtitle><stitle>Biogeochemistry</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>149</volume><issue>1</issue><spage>53</spage><epage>73</epage><pages>53-73</pages><issn>0168-2563</issn><eissn>1573-515X</eissn><abstract>Biological nitrogen fixation (BNF), a key reaction of the nitrogen cycle, is catalyzed by the enzyme nitrogenase. The best studied isoform of this metalloenzyme requires molybdenum (Mo) at its active center to reduce atmospheric dinitrogen (N₂) into bioavailable ammonium. The Mo-dependent nitrogenase is found in all diazotrophs and is the only nitrogenase reported in diazotrophs that form N₂-fixing symbioses with higher plants. In addition to the canonical Mo nitrogenase, two alternative nitrogenases, which use either vanadium (V) or iron (Fe) instead of Mo are known to fix nitrogen. They have been identified in ecologically important groups including free-living bacteria in soils and freshwaters and as symbionts of certain cryptogamic covers. Despite the discovery of these alternative isoforms more than 40 years ago, BNF is still believed to primarily rely on Mo. Here, we review existing studies on alternative nitrogenases in terrestrial settings, spanning inland forests to coastal ecosystems. These studies show frequent Mo limitation of BNF, ubiquitous distribution of alternative nitrogenase genes and significant contributions of alternative nitrogenases to N₂ fixation in ecosystems ranging from the tropics to the subarctic. The effect of temperature on nitrogenase isoform activity and regulation is also discussed. We present recently developed methods for measuring alternative nitrogenase activity in the field and discuss the associated analytical challenges. Finally, we discuss how the enzymatic diversity of nitrogenase forces a re-examination of existing knowledge gaps and our understanding of BNF in nature.</abstract><cop>Cham</cop><pub>Springer Science + Business Media</pub><doi>10.1007/s10533-020-00666-7</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-6842-4561</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0168-2563
ispartof Biogeochemistry, 2020-05, Vol.149 (1), p.53-73
issn 0168-2563
1573-515X
language eng
recordid cdi_proquest_journals_2401553775
source Jstor Complete Legacy; SpringerLink Journals
subjects Ammonium
Ammonium compounds
Bioavailability
Biogeosciences
Boreal ecosystems
Coastal ecosystems
Earth and Environmental Science
Earth Sciences
Ecosystems
Environmental Chemistry
Fresh water
Genes
Iron
Isoforms
Life Sciences
Measurement methods
Molybdenum
Nitrogen
Nitrogen cycle
Nitrogen fixation
Nitrogenase
Nitrogenation
ORIGINAL PAPERS
Soil
Soil bacteria
Soil microorganisms
Symbionts
Symbiosis
Temperature effects
Terrestrial ecosystems
Tropical environments
Vanadium
title Biological nitrogen fixation by alternative nitrogenases in terrestrial ecosystems: a review
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A39%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biological%20nitrogen%20fixation%20by%20alternative%20nitrogenases%20in%20terrestrial%20ecosystems:%20a%20review&rft.jtitle=Biogeochemistry&rft.au=Bellenger,%20J.%20P.&rft.date=2020-05-01&rft.volume=149&rft.issue=1&rft.spage=53&rft.epage=73&rft.pages=53-73&rft.issn=0168-2563&rft.eissn=1573-515X&rft_id=info:doi/10.1007/s10533-020-00666-7&rft_dat=%3Cjstor_proqu%3E48727893%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2401553775&rft_id=info:pmid/&rft_jstor_id=48727893&rfr_iscdi=true