Biological nitrogen fixation by alternative nitrogenases in terrestrial ecosystems: a review
Biological nitrogen fixation (BNF), a key reaction of the nitrogen cycle, is catalyzed by the enzyme nitrogenase. The best studied isoform of this metalloenzyme requires molybdenum (Mo) at its active center to reduce atmospheric dinitrogen (N₂) into bioavailable ammonium. The Mo-dependent nitrogenas...
Gespeichert in:
Veröffentlicht in: | Biogeochemistry 2020-05, Vol.149 (1), p.53-73 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 73 |
---|---|
container_issue | 1 |
container_start_page | 53 |
container_title | Biogeochemistry |
container_volume | 149 |
creator | Bellenger, J. P. Darnajoux, R. Zhang, X. Kraepiel, A. M. L. |
description | Biological nitrogen fixation (BNF), a key reaction of the nitrogen cycle, is catalyzed by the enzyme nitrogenase. The best studied isoform of this metalloenzyme requires molybdenum (Mo) at its active center to reduce atmospheric dinitrogen (N₂) into bioavailable ammonium. The Mo-dependent nitrogenase is found in all diazotrophs and is the only nitrogenase reported in diazotrophs that form N₂-fixing symbioses with higher plants. In addition to the canonical Mo nitrogenase, two alternative nitrogenases, which use either vanadium (V) or iron (Fe) instead of Mo are known to fix nitrogen. They have been identified in ecologically important groups including free-living bacteria in soils and freshwaters and as symbionts of certain cryptogamic covers. Despite the discovery of these alternative isoforms more than 40 years ago, BNF is still believed to primarily rely on Mo. Here, we review existing studies on alternative nitrogenases in terrestrial settings, spanning inland forests to coastal ecosystems. These studies show frequent Mo limitation of BNF, ubiquitous distribution of alternative nitrogenase genes and significant contributions of alternative nitrogenases to N₂ fixation in ecosystems ranging from the tropics to the subarctic. The effect of temperature on nitrogenase isoform activity and regulation is also discussed. We present recently developed methods for measuring alternative nitrogenase activity in the field and discuss the associated analytical challenges. Finally, we discuss how the enzymatic diversity of nitrogenase forces a re-examination of existing knowledge gaps and our understanding of BNF in nature. |
doi_str_mv | 10.1007/s10533-020-00666-7 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2401553775</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>48727893</jstor_id><sourcerecordid>48727893</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-3f95277c154499befa53032d23f11572e96030a52ef12392789f16ca5a78806c3</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWKt_QBAWPEcnmU2ye9RiVSgIouAtpGtSUrabmmzF_ntTV-rN0zDM-948HiHnDK4YgLpODAQiBQ4UQEpJ1QEZMaGQCibeDskImKwoFxKPyUlKSwCoFeCIPN_60IaFb0xbdL6PYWG7wvkv0_vQFfNtYdrexi6vn3YvMMmmwndFvkSb-ugzbJuQtqm3q3RKjpxpkz37nWPyOr17mTzQ2dP94-RmRptSsJ6iqwVXqmGiLOt6bp0RCMjfOTqWk3NbS0AwglvHONZcVbVjsjHCqKoC2eCYXA6-6xg-NjmHXoZNjtomzUtgQqBSIqv4oGpiSClap9fRr0zcagZ6150eutO5O_3TnVYZwgFKWdwtbPyz_pe6GKhl6kPc_ykrtQuP-A25yntr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2401553775</pqid></control><display><type>article</type><title>Biological nitrogen fixation by alternative nitrogenases in terrestrial ecosystems: a review</title><source>Jstor Complete Legacy</source><source>SpringerLink Journals</source><creator>Bellenger, J. P. ; Darnajoux, R. ; Zhang, X. ; Kraepiel, A. M. L.</creator><creatorcontrib>Bellenger, J. P. ; Darnajoux, R. ; Zhang, X. ; Kraepiel, A. M. L.</creatorcontrib><description>Biological nitrogen fixation (BNF), a key reaction of the nitrogen cycle, is catalyzed by the enzyme nitrogenase. The best studied isoform of this metalloenzyme requires molybdenum (Mo) at its active center to reduce atmospheric dinitrogen (N₂) into bioavailable ammonium. The Mo-dependent nitrogenase is found in all diazotrophs and is the only nitrogenase reported in diazotrophs that form N₂-fixing symbioses with higher plants. In addition to the canonical Mo nitrogenase, two alternative nitrogenases, which use either vanadium (V) or iron (Fe) instead of Mo are known to fix nitrogen. They have been identified in ecologically important groups including free-living bacteria in soils and freshwaters and as symbionts of certain cryptogamic covers. Despite the discovery of these alternative isoforms more than 40 years ago, BNF is still believed to primarily rely on Mo. Here, we review existing studies on alternative nitrogenases in terrestrial settings, spanning inland forests to coastal ecosystems. These studies show frequent Mo limitation of BNF, ubiquitous distribution of alternative nitrogenase genes and significant contributions of alternative nitrogenases to N₂ fixation in ecosystems ranging from the tropics to the subarctic. The effect of temperature on nitrogenase isoform activity and regulation is also discussed. We present recently developed methods for measuring alternative nitrogenase activity in the field and discuss the associated analytical challenges. Finally, we discuss how the enzymatic diversity of nitrogenase forces a re-examination of existing knowledge gaps and our understanding of BNF in nature.</description><identifier>ISSN: 0168-2563</identifier><identifier>EISSN: 1573-515X</identifier><identifier>DOI: 10.1007/s10533-020-00666-7</identifier><language>eng</language><publisher>Cham: Springer Science + Business Media</publisher><subject>Ammonium ; Ammonium compounds ; Bioavailability ; Biogeosciences ; Boreal ecosystems ; Coastal ecosystems ; Earth and Environmental Science ; Earth Sciences ; Ecosystems ; Environmental Chemistry ; Fresh water ; Genes ; Iron ; Isoforms ; Life Sciences ; Measurement methods ; Molybdenum ; Nitrogen ; Nitrogen cycle ; Nitrogen fixation ; Nitrogenase ; Nitrogenation ; ORIGINAL PAPERS ; Soil ; Soil bacteria ; Soil microorganisms ; Symbionts ; Symbiosis ; Temperature effects ; Terrestrial ecosystems ; Tropical environments ; Vanadium</subject><ispartof>Biogeochemistry, 2020-05, Vol.149 (1), p.53-73</ispartof><rights>Springer Nature Switzerland AG 2020</rights><rights>Springer Nature Switzerland AG 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-3f95277c154499befa53032d23f11572e96030a52ef12392789f16ca5a78806c3</citedby><cites>FETCH-LOGICAL-c451t-3f95277c154499befa53032d23f11572e96030a52ef12392789f16ca5a78806c3</cites><orcidid>0000-0001-6842-4561</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/48727893$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/48727893$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,27903,27904,41467,42536,51297,57995,58228</link.rule.ids></links><search><creatorcontrib>Bellenger, J. P.</creatorcontrib><creatorcontrib>Darnajoux, R.</creatorcontrib><creatorcontrib>Zhang, X.</creatorcontrib><creatorcontrib>Kraepiel, A. M. L.</creatorcontrib><title>Biological nitrogen fixation by alternative nitrogenases in terrestrial ecosystems: a review</title><title>Biogeochemistry</title><addtitle>Biogeochemistry</addtitle><description>Biological nitrogen fixation (BNF), a key reaction of the nitrogen cycle, is catalyzed by the enzyme nitrogenase. The best studied isoform of this metalloenzyme requires molybdenum (Mo) at its active center to reduce atmospheric dinitrogen (N₂) into bioavailable ammonium. The Mo-dependent nitrogenase is found in all diazotrophs and is the only nitrogenase reported in diazotrophs that form N₂-fixing symbioses with higher plants. In addition to the canonical Mo nitrogenase, two alternative nitrogenases, which use either vanadium (V) or iron (Fe) instead of Mo are known to fix nitrogen. They have been identified in ecologically important groups including free-living bacteria in soils and freshwaters and as symbionts of certain cryptogamic covers. Despite the discovery of these alternative isoforms more than 40 years ago, BNF is still believed to primarily rely on Mo. Here, we review existing studies on alternative nitrogenases in terrestrial settings, spanning inland forests to coastal ecosystems. These studies show frequent Mo limitation of BNF, ubiquitous distribution of alternative nitrogenase genes and significant contributions of alternative nitrogenases to N₂ fixation in ecosystems ranging from the tropics to the subarctic. The effect of temperature on nitrogenase isoform activity and regulation is also discussed. We present recently developed methods for measuring alternative nitrogenase activity in the field and discuss the associated analytical challenges. Finally, we discuss how the enzymatic diversity of nitrogenase forces a re-examination of existing knowledge gaps and our understanding of BNF in nature.</description><subject>Ammonium</subject><subject>Ammonium compounds</subject><subject>Bioavailability</subject><subject>Biogeosciences</subject><subject>Boreal ecosystems</subject><subject>Coastal ecosystems</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Ecosystems</subject><subject>Environmental Chemistry</subject><subject>Fresh water</subject><subject>Genes</subject><subject>Iron</subject><subject>Isoforms</subject><subject>Life Sciences</subject><subject>Measurement methods</subject><subject>Molybdenum</subject><subject>Nitrogen</subject><subject>Nitrogen cycle</subject><subject>Nitrogen fixation</subject><subject>Nitrogenase</subject><subject>Nitrogenation</subject><subject>ORIGINAL PAPERS</subject><subject>Soil</subject><subject>Soil bacteria</subject><subject>Soil microorganisms</subject><subject>Symbionts</subject><subject>Symbiosis</subject><subject>Temperature effects</subject><subject>Terrestrial ecosystems</subject><subject>Tropical environments</subject><subject>Vanadium</subject><issn>0168-2563</issn><issn>1573-515X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kEFLAzEQhYMoWKt_QBAWPEcnmU2ye9RiVSgIouAtpGtSUrabmmzF_ntTV-rN0zDM-948HiHnDK4YgLpODAQiBQ4UQEpJ1QEZMaGQCibeDskImKwoFxKPyUlKSwCoFeCIPN_60IaFb0xbdL6PYWG7wvkv0_vQFfNtYdrexi6vn3YvMMmmwndFvkSb-ugzbJuQtqm3q3RKjpxpkz37nWPyOr17mTzQ2dP94-RmRptSsJ6iqwVXqmGiLOt6bp0RCMjfOTqWk3NbS0AwglvHONZcVbVjsjHCqKoC2eCYXA6-6xg-NjmHXoZNjtomzUtgQqBSIqv4oGpiSClap9fRr0zcagZ6150eutO5O_3TnVYZwgFKWdwtbPyz_pe6GKhl6kPc_ykrtQuP-A25yntr</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Bellenger, J. P.</creator><creator>Darnajoux, R.</creator><creator>Zhang, X.</creator><creator>Kraepiel, A. M. L.</creator><general>Springer Science + Business Media</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>LK8</scope><scope>M0S</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-6842-4561</orcidid></search><sort><creationdate>20200501</creationdate><title>Biological nitrogen fixation by alternative nitrogenases in terrestrial ecosystems</title><author>Bellenger, J. P. ; Darnajoux, R. ; Zhang, X. ; Kraepiel, A. M. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-3f95277c154499befa53032d23f11572e96030a52ef12392789f16ca5a78806c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ammonium</topic><topic>Ammonium compounds</topic><topic>Bioavailability</topic><topic>Biogeosciences</topic><topic>Boreal ecosystems</topic><topic>Coastal ecosystems</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Ecosystems</topic><topic>Environmental Chemistry</topic><topic>Fresh water</topic><topic>Genes</topic><topic>Iron</topic><topic>Isoforms</topic><topic>Life Sciences</topic><topic>Measurement methods</topic><topic>Molybdenum</topic><topic>Nitrogen</topic><topic>Nitrogen cycle</topic><topic>Nitrogen fixation</topic><topic>Nitrogenase</topic><topic>Nitrogenation</topic><topic>ORIGINAL PAPERS</topic><topic>Soil</topic><topic>Soil bacteria</topic><topic>Soil microorganisms</topic><topic>Symbionts</topic><topic>Symbiosis</topic><topic>Temperature effects</topic><topic>Terrestrial ecosystems</topic><topic>Tropical environments</topic><topic>Vanadium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bellenger, J. P.</creatorcontrib><creatorcontrib>Darnajoux, R.</creatorcontrib><creatorcontrib>Zhang, X.</creatorcontrib><creatorcontrib>Kraepiel, A. M. L.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Water Resources Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Biogeochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bellenger, J. P.</au><au>Darnajoux, R.</au><au>Zhang, X.</au><au>Kraepiel, A. M. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biological nitrogen fixation by alternative nitrogenases in terrestrial ecosystems: a review</atitle><jtitle>Biogeochemistry</jtitle><stitle>Biogeochemistry</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>149</volume><issue>1</issue><spage>53</spage><epage>73</epage><pages>53-73</pages><issn>0168-2563</issn><eissn>1573-515X</eissn><abstract>Biological nitrogen fixation (BNF), a key reaction of the nitrogen cycle, is catalyzed by the enzyme nitrogenase. The best studied isoform of this metalloenzyme requires molybdenum (Mo) at its active center to reduce atmospheric dinitrogen (N₂) into bioavailable ammonium. The Mo-dependent nitrogenase is found in all diazotrophs and is the only nitrogenase reported in diazotrophs that form N₂-fixing symbioses with higher plants. In addition to the canonical Mo nitrogenase, two alternative nitrogenases, which use either vanadium (V) or iron (Fe) instead of Mo are known to fix nitrogen. They have been identified in ecologically important groups including free-living bacteria in soils and freshwaters and as symbionts of certain cryptogamic covers. Despite the discovery of these alternative isoforms more than 40 years ago, BNF is still believed to primarily rely on Mo. Here, we review existing studies on alternative nitrogenases in terrestrial settings, spanning inland forests to coastal ecosystems. These studies show frequent Mo limitation of BNF, ubiquitous distribution of alternative nitrogenase genes and significant contributions of alternative nitrogenases to N₂ fixation in ecosystems ranging from the tropics to the subarctic. The effect of temperature on nitrogenase isoform activity and regulation is also discussed. We present recently developed methods for measuring alternative nitrogenase activity in the field and discuss the associated analytical challenges. Finally, we discuss how the enzymatic diversity of nitrogenase forces a re-examination of existing knowledge gaps and our understanding of BNF in nature.</abstract><cop>Cham</cop><pub>Springer Science + Business Media</pub><doi>10.1007/s10533-020-00666-7</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-6842-4561</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0168-2563 |
ispartof | Biogeochemistry, 2020-05, Vol.149 (1), p.53-73 |
issn | 0168-2563 1573-515X |
language | eng |
recordid | cdi_proquest_journals_2401553775 |
source | Jstor Complete Legacy; SpringerLink Journals |
subjects | Ammonium Ammonium compounds Bioavailability Biogeosciences Boreal ecosystems Coastal ecosystems Earth and Environmental Science Earth Sciences Ecosystems Environmental Chemistry Fresh water Genes Iron Isoforms Life Sciences Measurement methods Molybdenum Nitrogen Nitrogen cycle Nitrogen fixation Nitrogenase Nitrogenation ORIGINAL PAPERS Soil Soil bacteria Soil microorganisms Symbionts Symbiosis Temperature effects Terrestrial ecosystems Tropical environments Vanadium |
title | Biological nitrogen fixation by alternative nitrogenases in terrestrial ecosystems: a review |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A39%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biological%20nitrogen%20fixation%20by%20alternative%20nitrogenases%20in%20terrestrial%20ecosystems:%20a%20review&rft.jtitle=Biogeochemistry&rft.au=Bellenger,%20J.%20P.&rft.date=2020-05-01&rft.volume=149&rft.issue=1&rft.spage=53&rft.epage=73&rft.pages=53-73&rft.issn=0168-2563&rft.eissn=1573-515X&rft_id=info:doi/10.1007/s10533-020-00666-7&rft_dat=%3Cjstor_proqu%3E48727893%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2401553775&rft_id=info:pmid/&rft_jstor_id=48727893&rfr_iscdi=true |