On the Incompressible Limit for the Compressible Free-Boundary Euler Equations with Surface Tension in the Case of a Liquid

In this paper we establish the incompressible limit for the compressible free-boundary Euler equations with surface tension in the case of a liquid. Compared to the case without surface tension treated recently in Lindblad and Luo (Commun Pure Appl Math 71:1273–1333, 2018) and Luo (Ann PDE 4(2):1–71...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archive for rational mechanics and analysis 2020-08, Vol.237 (2), p.829-897
Hauptverfasser: Disconzi, Marcelo M., Luo, Chenyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 897
container_issue 2
container_start_page 829
container_title Archive for rational mechanics and analysis
container_volume 237
creator Disconzi, Marcelo M.
Luo, Chenyun
description In this paper we establish the incompressible limit for the compressible free-boundary Euler equations with surface tension in the case of a liquid. Compared to the case without surface tension treated recently in Lindblad and Luo (Commun Pure Appl Math 71:1273–1333, 2018) and Luo (Ann PDE 4(2):1–71, 2018), the presence of surface tension introduces severe new technical challenges, in that several boundary terms that automatically vanish when surface tension is absent now contribute at top order. Combined with the necessity of producing estimates uniform in the sound speed in order to pass to the limit, such difficulties imply that neither the techniques employed for the case without surface tension, nor estimates previously derived for a liquid with surface tension and fixed sound speed, are applicable here. In order to obtain our result, we devise a suitable sound-speed-weighted energy that takes into account the coupling of the fluid motion with the boundary geometry. Estimates are closed by exploiting the full non-linear structure of the Euler equations and invoking several geometric properties of the boundary in order to produce some remarkable cancellations. We stress that we do not assume the fluid to be irrotational.
doi_str_mv 10.1007/s00205-020-01516-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2401553692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2401553692</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-636b5546177e46507e97a5801bdb130b77608a4798a3892a66e681c3d2733d03</originalsourceid><addsrcrecordid>eNp9UE1LAzEQDaJgrf4BTwHP0UmySXaPulQtFHqw95DdzdqUdtMmu4j45027gp68zDAz74N5CN1SuKcA6iECMBAkFQJUUEmyMzShGWcEpOLnaAIAnBSCqUt0FePmODIuJ-hr2eF-bfG8q_1uH2yMrtpavHA71-PWh9Ox_Ht6DtaSJz90jQmfeDZsbcCzw2B657uIP1y_xm9DaE1t8cp2MW2xGz1KEy32LTZJ_jC45hpdtGYb7c1Pn6LV82xVvpLF8mVePi5IzWnRE8llJUQmqVI2kwKULZQROdCqqSiHSikJuclUkRueF8xIaWVOa94wxXkDfIruRtl98IfBxl5v_BC65KhZltISXBYsodiIqoOPMdhW74PbpRc1BX3MWI8Z61T0KWOdJRIfSTGBu3cbfqX_YX0D_BN9oQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2401553692</pqid></control><display><type>article</type><title>On the Incompressible Limit for the Compressible Free-Boundary Euler Equations with Surface Tension in the Case of a Liquid</title><source>SpringerLink Journals - AutoHoldings</source><creator>Disconzi, Marcelo M. ; Luo, Chenyun</creator><creatorcontrib>Disconzi, Marcelo M. ; Luo, Chenyun</creatorcontrib><description>In this paper we establish the incompressible limit for the compressible free-boundary Euler equations with surface tension in the case of a liquid. Compared to the case without surface tension treated recently in Lindblad and Luo (Commun Pure Appl Math 71:1273–1333, 2018) and Luo (Ann PDE 4(2):1–71, 2018), the presence of surface tension introduces severe new technical challenges, in that several boundary terms that automatically vanish when surface tension is absent now contribute at top order. Combined with the necessity of producing estimates uniform in the sound speed in order to pass to the limit, such difficulties imply that neither the techniques employed for the case without surface tension, nor estimates previously derived for a liquid with surface tension and fixed sound speed, are applicable here. In order to obtain our result, we devise a suitable sound-speed-weighted energy that takes into account the coupling of the fluid motion with the boundary geometry. Estimates are closed by exploiting the full non-linear structure of the Euler equations and invoking several geometric properties of the boundary in order to produce some remarkable cancellations. We stress that we do not assume the fluid to be irrotational.</description><identifier>ISSN: 0003-9527</identifier><identifier>EISSN: 1432-0673</identifier><identifier>DOI: 10.1007/s00205-020-01516-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical Mechanics ; Complex Systems ; Compressibility ; Estimates ; Euler-Lagrange equation ; Eulers equations ; Fluid flow ; Fluid- and Aerodynamics ; Incompressible flow ; Mathematical analysis ; Mathematical and Computational Physics ; Physics ; Physics and Astronomy ; Sound ; Surface tension ; Theoretical</subject><ispartof>Archive for rational mechanics and analysis, 2020-08, Vol.237 (2), p.829-897</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-636b5546177e46507e97a5801bdb130b77608a4798a3892a66e681c3d2733d03</citedby><cites>FETCH-LOGICAL-c319t-636b5546177e46507e97a5801bdb130b77608a4798a3892a66e681c3d2733d03</cites><orcidid>0000-0002-3449-7778 ; 0000-0002-8808-2121</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00205-020-01516-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00205-020-01516-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Disconzi, Marcelo M.</creatorcontrib><creatorcontrib>Luo, Chenyun</creatorcontrib><title>On the Incompressible Limit for the Compressible Free-Boundary Euler Equations with Surface Tension in the Case of a Liquid</title><title>Archive for rational mechanics and analysis</title><addtitle>Arch Rational Mech Anal</addtitle><description>In this paper we establish the incompressible limit for the compressible free-boundary Euler equations with surface tension in the case of a liquid. Compared to the case without surface tension treated recently in Lindblad and Luo (Commun Pure Appl Math 71:1273–1333, 2018) and Luo (Ann PDE 4(2):1–71, 2018), the presence of surface tension introduces severe new technical challenges, in that several boundary terms that automatically vanish when surface tension is absent now contribute at top order. Combined with the necessity of producing estimates uniform in the sound speed in order to pass to the limit, such difficulties imply that neither the techniques employed for the case without surface tension, nor estimates previously derived for a liquid with surface tension and fixed sound speed, are applicable here. In order to obtain our result, we devise a suitable sound-speed-weighted energy that takes into account the coupling of the fluid motion with the boundary geometry. Estimates are closed by exploiting the full non-linear structure of the Euler equations and invoking several geometric properties of the boundary in order to produce some remarkable cancellations. We stress that we do not assume the fluid to be irrotational.</description><subject>Classical Mechanics</subject><subject>Complex Systems</subject><subject>Compressibility</subject><subject>Estimates</subject><subject>Euler-Lagrange equation</subject><subject>Eulers equations</subject><subject>Fluid flow</subject><subject>Fluid- and Aerodynamics</subject><subject>Incompressible flow</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Sound</subject><subject>Surface tension</subject><subject>Theoretical</subject><issn>0003-9527</issn><issn>1432-0673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UE1LAzEQDaJgrf4BTwHP0UmySXaPulQtFHqw95DdzdqUdtMmu4j45027gp68zDAz74N5CN1SuKcA6iECMBAkFQJUUEmyMzShGWcEpOLnaAIAnBSCqUt0FePmODIuJ-hr2eF-bfG8q_1uH2yMrtpavHA71-PWh9Ox_Ht6DtaSJz90jQmfeDZsbcCzw2B657uIP1y_xm9DaE1t8cp2MW2xGz1KEy32LTZJ_jC45hpdtGYb7c1Pn6LV82xVvpLF8mVePi5IzWnRE8llJUQmqVI2kwKULZQROdCqqSiHSikJuclUkRueF8xIaWVOa94wxXkDfIruRtl98IfBxl5v_BC65KhZltISXBYsodiIqoOPMdhW74PbpRc1BX3MWI8Z61T0KWOdJRIfSTGBu3cbfqX_YX0D_BN9oQ</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Disconzi, Marcelo M.</creator><creator>Luo, Chenyun</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-3449-7778</orcidid><orcidid>https://orcid.org/0000-0002-8808-2121</orcidid></search><sort><creationdate>20200801</creationdate><title>On the Incompressible Limit for the Compressible Free-Boundary Euler Equations with Surface Tension in the Case of a Liquid</title><author>Disconzi, Marcelo M. ; Luo, Chenyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-636b5546177e46507e97a5801bdb130b77608a4798a3892a66e681c3d2733d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Classical Mechanics</topic><topic>Complex Systems</topic><topic>Compressibility</topic><topic>Estimates</topic><topic>Euler-Lagrange equation</topic><topic>Eulers equations</topic><topic>Fluid flow</topic><topic>Fluid- and Aerodynamics</topic><topic>Incompressible flow</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Sound</topic><topic>Surface tension</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Disconzi, Marcelo M.</creatorcontrib><creatorcontrib>Luo, Chenyun</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Archive for rational mechanics and analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Disconzi, Marcelo M.</au><au>Luo, Chenyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Incompressible Limit for the Compressible Free-Boundary Euler Equations with Surface Tension in the Case of a Liquid</atitle><jtitle>Archive for rational mechanics and analysis</jtitle><stitle>Arch Rational Mech Anal</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>237</volume><issue>2</issue><spage>829</spage><epage>897</epage><pages>829-897</pages><issn>0003-9527</issn><eissn>1432-0673</eissn><abstract>In this paper we establish the incompressible limit for the compressible free-boundary Euler equations with surface tension in the case of a liquid. Compared to the case without surface tension treated recently in Lindblad and Luo (Commun Pure Appl Math 71:1273–1333, 2018) and Luo (Ann PDE 4(2):1–71, 2018), the presence of surface tension introduces severe new technical challenges, in that several boundary terms that automatically vanish when surface tension is absent now contribute at top order. Combined with the necessity of producing estimates uniform in the sound speed in order to pass to the limit, such difficulties imply that neither the techniques employed for the case without surface tension, nor estimates previously derived for a liquid with surface tension and fixed sound speed, are applicable here. In order to obtain our result, we devise a suitable sound-speed-weighted energy that takes into account the coupling of the fluid motion with the boundary geometry. Estimates are closed by exploiting the full non-linear structure of the Euler equations and invoking several geometric properties of the boundary in order to produce some remarkable cancellations. We stress that we do not assume the fluid to be irrotational.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00205-020-01516-4</doi><tpages>69</tpages><orcidid>https://orcid.org/0000-0002-3449-7778</orcidid><orcidid>https://orcid.org/0000-0002-8808-2121</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-9527
ispartof Archive for rational mechanics and analysis, 2020-08, Vol.237 (2), p.829-897
issn 0003-9527
1432-0673
language eng
recordid cdi_proquest_journals_2401553692
source SpringerLink Journals - AutoHoldings
subjects Classical Mechanics
Complex Systems
Compressibility
Estimates
Euler-Lagrange equation
Eulers equations
Fluid flow
Fluid- and Aerodynamics
Incompressible flow
Mathematical analysis
Mathematical and Computational Physics
Physics
Physics and Astronomy
Sound
Surface tension
Theoretical
title On the Incompressible Limit for the Compressible Free-Boundary Euler Equations with Surface Tension in the Case of a Liquid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T13%3A30%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Incompressible%20Limit%20for%20the%20Compressible%20Free-Boundary%20Euler%20Equations%20with%20Surface%20Tension%20in%20the%20Case%20of%20a%20Liquid&rft.jtitle=Archive%20for%20rational%20mechanics%20and%20analysis&rft.au=Disconzi,%20Marcelo%20M.&rft.date=2020-08-01&rft.volume=237&rft.issue=2&rft.spage=829&rft.epage=897&rft.pages=829-897&rft.issn=0003-9527&rft.eissn=1432-0673&rft_id=info:doi/10.1007/s00205-020-01516-4&rft_dat=%3Cproquest_cross%3E2401553692%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2401553692&rft_id=info:pmid/&rfr_iscdi=true