On the Incompressible Limit for the Compressible Free-Boundary Euler Equations with Surface Tension in the Case of a Liquid
In this paper we establish the incompressible limit for the compressible free-boundary Euler equations with surface tension in the case of a liquid. Compared to the case without surface tension treated recently in Lindblad and Luo (Commun Pure Appl Math 71:1273–1333, 2018) and Luo (Ann PDE 4(2):1–71...
Gespeichert in:
Veröffentlicht in: | Archive for rational mechanics and analysis 2020-08, Vol.237 (2), p.829-897 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 897 |
---|---|
container_issue | 2 |
container_start_page | 829 |
container_title | Archive for rational mechanics and analysis |
container_volume | 237 |
creator | Disconzi, Marcelo M. Luo, Chenyun |
description | In this paper we establish the incompressible limit for the compressible free-boundary Euler equations with surface tension in the case of a liquid. Compared to the case without surface tension treated recently in Lindblad and Luo (Commun Pure Appl Math 71:1273–1333, 2018) and Luo (Ann PDE 4(2):1–71, 2018), the presence of surface tension introduces severe new technical challenges, in that several boundary terms that automatically vanish when surface tension is absent now contribute at top order. Combined with the necessity of producing estimates uniform in the sound speed in order to pass to the limit, such difficulties imply that neither the techniques employed for the case without surface tension, nor estimates previously derived for a liquid with surface tension and fixed sound speed, are applicable here. In order to obtain our result, we devise a suitable sound-speed-weighted energy that takes into account the coupling of the fluid motion with the boundary geometry. Estimates are closed by exploiting the full non-linear structure of the Euler equations and invoking several geometric properties of the boundary in order to produce some remarkable cancellations. We stress that we do not assume the fluid to be irrotational. |
doi_str_mv | 10.1007/s00205-020-01516-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2401553692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2401553692</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-636b5546177e46507e97a5801bdb130b77608a4798a3892a66e681c3d2733d03</originalsourceid><addsrcrecordid>eNp9UE1LAzEQDaJgrf4BTwHP0UmySXaPulQtFHqw95DdzdqUdtMmu4j45027gp68zDAz74N5CN1SuKcA6iECMBAkFQJUUEmyMzShGWcEpOLnaAIAnBSCqUt0FePmODIuJ-hr2eF-bfG8q_1uH2yMrtpavHA71-PWh9Ox_Ht6DtaSJz90jQmfeDZsbcCzw2B657uIP1y_xm9DaE1t8cp2MW2xGz1KEy32LTZJ_jC45hpdtGYb7c1Pn6LV82xVvpLF8mVePi5IzWnRE8llJUQmqVI2kwKULZQROdCqqSiHSikJuclUkRueF8xIaWVOa94wxXkDfIruRtl98IfBxl5v_BC65KhZltISXBYsodiIqoOPMdhW74PbpRc1BX3MWI8Z61T0KWOdJRIfSTGBu3cbfqX_YX0D_BN9oQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2401553692</pqid></control><display><type>article</type><title>On the Incompressible Limit for the Compressible Free-Boundary Euler Equations with Surface Tension in the Case of a Liquid</title><source>SpringerLink Journals - AutoHoldings</source><creator>Disconzi, Marcelo M. ; Luo, Chenyun</creator><creatorcontrib>Disconzi, Marcelo M. ; Luo, Chenyun</creatorcontrib><description>In this paper we establish the incompressible limit for the compressible free-boundary Euler equations with surface tension in the case of a liquid. Compared to the case without surface tension treated recently in Lindblad and Luo (Commun Pure Appl Math 71:1273–1333, 2018) and Luo (Ann PDE 4(2):1–71, 2018), the presence of surface tension introduces severe new technical challenges, in that several boundary terms that automatically vanish when surface tension is absent now contribute at top order. Combined with the necessity of producing estimates uniform in the sound speed in order to pass to the limit, such difficulties imply that neither the techniques employed for the case without surface tension, nor estimates previously derived for a liquid with surface tension and fixed sound speed, are applicable here. In order to obtain our result, we devise a suitable sound-speed-weighted energy that takes into account the coupling of the fluid motion with the boundary geometry. Estimates are closed by exploiting the full non-linear structure of the Euler equations and invoking several geometric properties of the boundary in order to produce some remarkable cancellations. We stress that we do not assume the fluid to be irrotational.</description><identifier>ISSN: 0003-9527</identifier><identifier>EISSN: 1432-0673</identifier><identifier>DOI: 10.1007/s00205-020-01516-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical Mechanics ; Complex Systems ; Compressibility ; Estimates ; Euler-Lagrange equation ; Eulers equations ; Fluid flow ; Fluid- and Aerodynamics ; Incompressible flow ; Mathematical analysis ; Mathematical and Computational Physics ; Physics ; Physics and Astronomy ; Sound ; Surface tension ; Theoretical</subject><ispartof>Archive for rational mechanics and analysis, 2020-08, Vol.237 (2), p.829-897</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-636b5546177e46507e97a5801bdb130b77608a4798a3892a66e681c3d2733d03</citedby><cites>FETCH-LOGICAL-c319t-636b5546177e46507e97a5801bdb130b77608a4798a3892a66e681c3d2733d03</cites><orcidid>0000-0002-3449-7778 ; 0000-0002-8808-2121</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00205-020-01516-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00205-020-01516-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Disconzi, Marcelo M.</creatorcontrib><creatorcontrib>Luo, Chenyun</creatorcontrib><title>On the Incompressible Limit for the Compressible Free-Boundary Euler Equations with Surface Tension in the Case of a Liquid</title><title>Archive for rational mechanics and analysis</title><addtitle>Arch Rational Mech Anal</addtitle><description>In this paper we establish the incompressible limit for the compressible free-boundary Euler equations with surface tension in the case of a liquid. Compared to the case without surface tension treated recently in Lindblad and Luo (Commun Pure Appl Math 71:1273–1333, 2018) and Luo (Ann PDE 4(2):1–71, 2018), the presence of surface tension introduces severe new technical challenges, in that several boundary terms that automatically vanish when surface tension is absent now contribute at top order. Combined with the necessity of producing estimates uniform in the sound speed in order to pass to the limit, such difficulties imply that neither the techniques employed for the case without surface tension, nor estimates previously derived for a liquid with surface tension and fixed sound speed, are applicable here. In order to obtain our result, we devise a suitable sound-speed-weighted energy that takes into account the coupling of the fluid motion with the boundary geometry. Estimates are closed by exploiting the full non-linear structure of the Euler equations and invoking several geometric properties of the boundary in order to produce some remarkable cancellations. We stress that we do not assume the fluid to be irrotational.</description><subject>Classical Mechanics</subject><subject>Complex Systems</subject><subject>Compressibility</subject><subject>Estimates</subject><subject>Euler-Lagrange equation</subject><subject>Eulers equations</subject><subject>Fluid flow</subject><subject>Fluid- and Aerodynamics</subject><subject>Incompressible flow</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Sound</subject><subject>Surface tension</subject><subject>Theoretical</subject><issn>0003-9527</issn><issn>1432-0673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UE1LAzEQDaJgrf4BTwHP0UmySXaPulQtFHqw95DdzdqUdtMmu4j45027gp68zDAz74N5CN1SuKcA6iECMBAkFQJUUEmyMzShGWcEpOLnaAIAnBSCqUt0FePmODIuJ-hr2eF-bfG8q_1uH2yMrtpavHA71-PWh9Ox_Ht6DtaSJz90jQmfeDZsbcCzw2B657uIP1y_xm9DaE1t8cp2MW2xGz1KEy32LTZJ_jC45hpdtGYb7c1Pn6LV82xVvpLF8mVePi5IzWnRE8llJUQmqVI2kwKULZQROdCqqSiHSikJuclUkRueF8xIaWVOa94wxXkDfIruRtl98IfBxl5v_BC65KhZltISXBYsodiIqoOPMdhW74PbpRc1BX3MWI8Z61T0KWOdJRIfSTGBu3cbfqX_YX0D_BN9oQ</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Disconzi, Marcelo M.</creator><creator>Luo, Chenyun</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-3449-7778</orcidid><orcidid>https://orcid.org/0000-0002-8808-2121</orcidid></search><sort><creationdate>20200801</creationdate><title>On the Incompressible Limit for the Compressible Free-Boundary Euler Equations with Surface Tension in the Case of a Liquid</title><author>Disconzi, Marcelo M. ; Luo, Chenyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-636b5546177e46507e97a5801bdb130b77608a4798a3892a66e681c3d2733d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Classical Mechanics</topic><topic>Complex Systems</topic><topic>Compressibility</topic><topic>Estimates</topic><topic>Euler-Lagrange equation</topic><topic>Eulers equations</topic><topic>Fluid flow</topic><topic>Fluid- and Aerodynamics</topic><topic>Incompressible flow</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Sound</topic><topic>Surface tension</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Disconzi, Marcelo M.</creatorcontrib><creatorcontrib>Luo, Chenyun</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Archive for rational mechanics and analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Disconzi, Marcelo M.</au><au>Luo, Chenyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Incompressible Limit for the Compressible Free-Boundary Euler Equations with Surface Tension in the Case of a Liquid</atitle><jtitle>Archive for rational mechanics and analysis</jtitle><stitle>Arch Rational Mech Anal</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>237</volume><issue>2</issue><spage>829</spage><epage>897</epage><pages>829-897</pages><issn>0003-9527</issn><eissn>1432-0673</eissn><abstract>In this paper we establish the incompressible limit for the compressible free-boundary Euler equations with surface tension in the case of a liquid. Compared to the case without surface tension treated recently in Lindblad and Luo (Commun Pure Appl Math 71:1273–1333, 2018) and Luo (Ann PDE 4(2):1–71, 2018), the presence of surface tension introduces severe new technical challenges, in that several boundary terms that automatically vanish when surface tension is absent now contribute at top order. Combined with the necessity of producing estimates uniform in the sound speed in order to pass to the limit, such difficulties imply that neither the techniques employed for the case without surface tension, nor estimates previously derived for a liquid with surface tension and fixed sound speed, are applicable here. In order to obtain our result, we devise a suitable sound-speed-weighted energy that takes into account the coupling of the fluid motion with the boundary geometry. Estimates are closed by exploiting the full non-linear structure of the Euler equations and invoking several geometric properties of the boundary in order to produce some remarkable cancellations. We stress that we do not assume the fluid to be irrotational.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00205-020-01516-4</doi><tpages>69</tpages><orcidid>https://orcid.org/0000-0002-3449-7778</orcidid><orcidid>https://orcid.org/0000-0002-8808-2121</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-9527 |
ispartof | Archive for rational mechanics and analysis, 2020-08, Vol.237 (2), p.829-897 |
issn | 0003-9527 1432-0673 |
language | eng |
recordid | cdi_proquest_journals_2401553692 |
source | SpringerLink Journals - AutoHoldings |
subjects | Classical Mechanics Complex Systems Compressibility Estimates Euler-Lagrange equation Eulers equations Fluid flow Fluid- and Aerodynamics Incompressible flow Mathematical analysis Mathematical and Computational Physics Physics Physics and Astronomy Sound Surface tension Theoretical |
title | On the Incompressible Limit for the Compressible Free-Boundary Euler Equations with Surface Tension in the Case of a Liquid |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T13%3A30%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Incompressible%20Limit%20for%20the%20Compressible%20Free-Boundary%20Euler%20Equations%20with%20Surface%20Tension%20in%20the%20Case%20of%20a%20Liquid&rft.jtitle=Archive%20for%20rational%20mechanics%20and%20analysis&rft.au=Disconzi,%20Marcelo%20M.&rft.date=2020-08-01&rft.volume=237&rft.issue=2&rft.spage=829&rft.epage=897&rft.pages=829-897&rft.issn=0003-9527&rft.eissn=1432-0673&rft_id=info:doi/10.1007/s00205-020-01516-4&rft_dat=%3Cproquest_cross%3E2401553692%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2401553692&rft_id=info:pmid/&rfr_iscdi=true |