(F_K / F_\pi\) from Möbius domain-wall fermions solved on gradient-flowed HISQ ensembles
We report the results of a lattice quantum chromodynamics calculation of \(F_K/F_\pi\) using M\"{o}bius domain-wall fermions computed on gradient-flowed \(N_f=2+1+1\) highly-improved staggered quark (HISQ) ensembles. The calculation is performed with five values of the pion mass ranging from \(...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-09 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Miller, Nolan Monge-Camacho, Henry Chia Cheng Chang Hörz, Ben Rinaldi, Enrico Howarth, Dean Berkowitz, Evan Brantley, David A Arjun Singh Gambhir Körber, Christopher Monahan, Christopher J Clark, M A Joó, Bálint Kurth, Thorsten Nicholson, Amy Orginos, Kostas Vranas, Pavlos Walker-Loud, André |
description | We report the results of a lattice quantum chromodynamics calculation of \(F_K/F_\pi\) using M\"{o}bius domain-wall fermions computed on gradient-flowed \(N_f=2+1+1\) highly-improved staggered quark (HISQ) ensembles. The calculation is performed with five values of the pion mass ranging from \(130 \lesssim m_\pi \lesssim 400\) MeV, four lattice spacings of \(a\sim 0.15, 0.12, 0.09\) and \(0.06\) fm and multiple values of the lattice volume. The interpolation/extrapolation to the physical pion and kaon mass point, the continuum, and infinite volume limits are performed with a variety of different extrapolation functions utilizing both the relevant mixed-action effective field theory expressions as well as discretization-enhanced continuum chiral perturbation theory formulas. We find that the \(a\sim0.06\) fm ensemble is helpful, but not necessary to achieve a subpercent determination of \(F_K/F_\pi\). We also include an estimate of the strong isospin breaking corrections and arrive at a final result of \(F_{K^\pm}/F_{\pi^\pm} = 1.1942(45)\) with all sources of statistical and systematic uncertainty included. This is consistent with the Flavour Lattice Averaging Group average value, providing an important benchmark for our lattice action. Combining our result with experimental measurements of the pion and kaon leptonic decays leads to a determination of \(|V_{us}|/|V_{ud}| = 0.2311(10)\). |
doi_str_mv | 10.48550/arxiv.2005.04795 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2401515026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2401515026</sourcerecordid><originalsourceid>FETCH-proquest_journals_24015150263</originalsourceid><addsrcrecordid>eNqNjrFqwzAURUWgENP6A7I96JIOdp5lq3bmUpNSMoR2CRiMjOUgI0uJXpz0y_oD-bF46Ad0unDOGS5jiwTjrBACV9L_6EvMEUWMWb4WMxbwNE2iIuN8zkKiHhH5a86FSAO2X5b1J6ygrKujrl6g826A7e230SNB6wapbXSVxkCn_KCdJSBnLqoFZ-HgZauVPUedcdcJbT6-dqAsqaExip7YQycNqfBvH9lz-f79tomO3p1GRee6d6O3k6p5holIxPQq_V91B76UR4k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2401515026</pqid></control><display><type>article</type><title>(F_K / F_\pi\) from Möbius domain-wall fermions solved on gradient-flowed HISQ ensembles</title><source>Free E- Journals</source><creator>Miller, Nolan ; Monge-Camacho, Henry ; Chia Cheng Chang ; Hörz, Ben ; Rinaldi, Enrico ; Howarth, Dean ; Berkowitz, Evan ; Brantley, David A ; Arjun Singh Gambhir ; Körber, Christopher ; Monahan, Christopher J ; Clark, M A ; Joó, Bálint ; Kurth, Thorsten ; Nicholson, Amy ; Orginos, Kostas ; Vranas, Pavlos ; Walker-Loud, André</creator><creatorcontrib>Miller, Nolan ; Monge-Camacho, Henry ; Chia Cheng Chang ; Hörz, Ben ; Rinaldi, Enrico ; Howarth, Dean ; Berkowitz, Evan ; Brantley, David A ; Arjun Singh Gambhir ; Körber, Christopher ; Monahan, Christopher J ; Clark, M A ; Joó, Bálint ; Kurth, Thorsten ; Nicholson, Amy ; Orginos, Kostas ; Vranas, Pavlos ; Walker-Loud, André</creatorcontrib><description>We report the results of a lattice quantum chromodynamics calculation of \(F_K/F_\pi\) using M\"{o}bius domain-wall fermions computed on gradient-flowed \(N_f=2+1+1\) highly-improved staggered quark (HISQ) ensembles. The calculation is performed with five values of the pion mass ranging from \(130 \lesssim m_\pi \lesssim 400\) MeV, four lattice spacings of \(a\sim 0.15, 0.12, 0.09\) and \(0.06\) fm and multiple values of the lattice volume. The interpolation/extrapolation to the physical pion and kaon mass point, the continuum, and infinite volume limits are performed with a variety of different extrapolation functions utilizing both the relevant mixed-action effective field theory expressions as well as discretization-enhanced continuum chiral perturbation theory formulas. We find that the \(a\sim0.06\) fm ensemble is helpful, but not necessary to achieve a subpercent determination of \(F_K/F_\pi\). We also include an estimate of the strong isospin breaking corrections and arrive at a final result of \(F_{K^\pm}/F_{\pi^\pm} = 1.1942(45)\) with all sources of statistical and systematic uncertainty included. This is consistent with the Flavour Lattice Averaging Group average value, providing an important benchmark for our lattice action. Combining our result with experimental measurements of the pion and kaon leptonic decays leads to a determination of \(|V_{us}|/|V_{ud}| = 0.2311(10)\).</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2005.04795</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Chiral dynamics ; Domain walls ; Extrapolation ; Fermions ; Field theory ; Interpolation ; Kaons ; Mathematical analysis ; Perturbation methods ; Perturbation theory ; Pions ; Quantum chromodynamics</subject><ispartof>arXiv.org, 2020-09</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784,27924</link.rule.ids></links><search><creatorcontrib>Miller, Nolan</creatorcontrib><creatorcontrib>Monge-Camacho, Henry</creatorcontrib><creatorcontrib>Chia Cheng Chang</creatorcontrib><creatorcontrib>Hörz, Ben</creatorcontrib><creatorcontrib>Rinaldi, Enrico</creatorcontrib><creatorcontrib>Howarth, Dean</creatorcontrib><creatorcontrib>Berkowitz, Evan</creatorcontrib><creatorcontrib>Brantley, David A</creatorcontrib><creatorcontrib>Arjun Singh Gambhir</creatorcontrib><creatorcontrib>Körber, Christopher</creatorcontrib><creatorcontrib>Monahan, Christopher J</creatorcontrib><creatorcontrib>Clark, M A</creatorcontrib><creatorcontrib>Joó, Bálint</creatorcontrib><creatorcontrib>Kurth, Thorsten</creatorcontrib><creatorcontrib>Nicholson, Amy</creatorcontrib><creatorcontrib>Orginos, Kostas</creatorcontrib><creatorcontrib>Vranas, Pavlos</creatorcontrib><creatorcontrib>Walker-Loud, André</creatorcontrib><title>(F_K / F_\pi\) from Möbius domain-wall fermions solved on gradient-flowed HISQ ensembles</title><title>arXiv.org</title><description>We report the results of a lattice quantum chromodynamics calculation of \(F_K/F_\pi\) using M\"{o}bius domain-wall fermions computed on gradient-flowed \(N_f=2+1+1\) highly-improved staggered quark (HISQ) ensembles. The calculation is performed with five values of the pion mass ranging from \(130 \lesssim m_\pi \lesssim 400\) MeV, four lattice spacings of \(a\sim 0.15, 0.12, 0.09\) and \(0.06\) fm and multiple values of the lattice volume. The interpolation/extrapolation to the physical pion and kaon mass point, the continuum, and infinite volume limits are performed with a variety of different extrapolation functions utilizing both the relevant mixed-action effective field theory expressions as well as discretization-enhanced continuum chiral perturbation theory formulas. We find that the \(a\sim0.06\) fm ensemble is helpful, but not necessary to achieve a subpercent determination of \(F_K/F_\pi\). We also include an estimate of the strong isospin breaking corrections and arrive at a final result of \(F_{K^\pm}/F_{\pi^\pm} = 1.1942(45)\) with all sources of statistical and systematic uncertainty included. This is consistent with the Flavour Lattice Averaging Group average value, providing an important benchmark for our lattice action. Combining our result with experimental measurements of the pion and kaon leptonic decays leads to a determination of \(|V_{us}|/|V_{ud}| = 0.2311(10)\).</description><subject>Chiral dynamics</subject><subject>Domain walls</subject><subject>Extrapolation</subject><subject>Fermions</subject><subject>Field theory</subject><subject>Interpolation</subject><subject>Kaons</subject><subject>Mathematical analysis</subject><subject>Perturbation methods</subject><subject>Perturbation theory</subject><subject>Pions</subject><subject>Quantum chromodynamics</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjrFqwzAURUWgENP6A7I96JIOdp5lq3bmUpNSMoR2CRiMjOUgI0uJXpz0y_oD-bF46Ad0unDOGS5jiwTjrBACV9L_6EvMEUWMWb4WMxbwNE2iIuN8zkKiHhH5a86FSAO2X5b1J6ygrKujrl6g826A7e230SNB6wapbXSVxkCn_KCdJSBnLqoFZ-HgZauVPUedcdcJbT6-dqAsqaExip7YQycNqfBvH9lz-f79tomO3p1GRee6d6O3k6p5holIxPQq_V91B76UR4k</recordid><startdate>20200903</startdate><enddate>20200903</enddate><creator>Miller, Nolan</creator><creator>Monge-Camacho, Henry</creator><creator>Chia Cheng Chang</creator><creator>Hörz, Ben</creator><creator>Rinaldi, Enrico</creator><creator>Howarth, Dean</creator><creator>Berkowitz, Evan</creator><creator>Brantley, David A</creator><creator>Arjun Singh Gambhir</creator><creator>Körber, Christopher</creator><creator>Monahan, Christopher J</creator><creator>Clark, M A</creator><creator>Joó, Bálint</creator><creator>Kurth, Thorsten</creator><creator>Nicholson, Amy</creator><creator>Orginos, Kostas</creator><creator>Vranas, Pavlos</creator><creator>Walker-Loud, André</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200903</creationdate><title>(F_K / F_\pi\) from Möbius domain-wall fermions solved on gradient-flowed HISQ ensembles</title><author>Miller, Nolan ; Monge-Camacho, Henry ; Chia Cheng Chang ; Hörz, Ben ; Rinaldi, Enrico ; Howarth, Dean ; Berkowitz, Evan ; Brantley, David A ; Arjun Singh Gambhir ; Körber, Christopher ; Monahan, Christopher J ; Clark, M A ; Joó, Bálint ; Kurth, Thorsten ; Nicholson, Amy ; Orginos, Kostas ; Vranas, Pavlos ; Walker-Loud, André</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24015150263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chiral dynamics</topic><topic>Domain walls</topic><topic>Extrapolation</topic><topic>Fermions</topic><topic>Field theory</topic><topic>Interpolation</topic><topic>Kaons</topic><topic>Mathematical analysis</topic><topic>Perturbation methods</topic><topic>Perturbation theory</topic><topic>Pions</topic><topic>Quantum chromodynamics</topic><toplevel>online_resources</toplevel><creatorcontrib>Miller, Nolan</creatorcontrib><creatorcontrib>Monge-Camacho, Henry</creatorcontrib><creatorcontrib>Chia Cheng Chang</creatorcontrib><creatorcontrib>Hörz, Ben</creatorcontrib><creatorcontrib>Rinaldi, Enrico</creatorcontrib><creatorcontrib>Howarth, Dean</creatorcontrib><creatorcontrib>Berkowitz, Evan</creatorcontrib><creatorcontrib>Brantley, David A</creatorcontrib><creatorcontrib>Arjun Singh Gambhir</creatorcontrib><creatorcontrib>Körber, Christopher</creatorcontrib><creatorcontrib>Monahan, Christopher J</creatorcontrib><creatorcontrib>Clark, M A</creatorcontrib><creatorcontrib>Joó, Bálint</creatorcontrib><creatorcontrib>Kurth, Thorsten</creatorcontrib><creatorcontrib>Nicholson, Amy</creatorcontrib><creatorcontrib>Orginos, Kostas</creatorcontrib><creatorcontrib>Vranas, Pavlos</creatorcontrib><creatorcontrib>Walker-Loud, André</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miller, Nolan</au><au>Monge-Camacho, Henry</au><au>Chia Cheng Chang</au><au>Hörz, Ben</au><au>Rinaldi, Enrico</au><au>Howarth, Dean</au><au>Berkowitz, Evan</au><au>Brantley, David A</au><au>Arjun Singh Gambhir</au><au>Körber, Christopher</au><au>Monahan, Christopher J</au><au>Clark, M A</au><au>Joó, Bálint</au><au>Kurth, Thorsten</au><au>Nicholson, Amy</au><au>Orginos, Kostas</au><au>Vranas, Pavlos</au><au>Walker-Loud, André</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>(F_K / F_\pi\) from Möbius domain-wall fermions solved on gradient-flowed HISQ ensembles</atitle><jtitle>arXiv.org</jtitle><date>2020-09-03</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>We report the results of a lattice quantum chromodynamics calculation of \(F_K/F_\pi\) using M\"{o}bius domain-wall fermions computed on gradient-flowed \(N_f=2+1+1\) highly-improved staggered quark (HISQ) ensembles. The calculation is performed with five values of the pion mass ranging from \(130 \lesssim m_\pi \lesssim 400\) MeV, four lattice spacings of \(a\sim 0.15, 0.12, 0.09\) and \(0.06\) fm and multiple values of the lattice volume. The interpolation/extrapolation to the physical pion and kaon mass point, the continuum, and infinite volume limits are performed with a variety of different extrapolation functions utilizing both the relevant mixed-action effective field theory expressions as well as discretization-enhanced continuum chiral perturbation theory formulas. We find that the \(a\sim0.06\) fm ensemble is helpful, but not necessary to achieve a subpercent determination of \(F_K/F_\pi\). We also include an estimate of the strong isospin breaking corrections and arrive at a final result of \(F_{K^\pm}/F_{\pi^\pm} = 1.1942(45)\) with all sources of statistical and systematic uncertainty included. This is consistent with the Flavour Lattice Averaging Group average value, providing an important benchmark for our lattice action. Combining our result with experimental measurements of the pion and kaon leptonic decays leads to a determination of \(|V_{us}|/|V_{ud}| = 0.2311(10)\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2005.04795</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2401515026 |
source | Free E- Journals |
subjects | Chiral dynamics Domain walls Extrapolation Fermions Field theory Interpolation Kaons Mathematical analysis Perturbation methods Perturbation theory Pions Quantum chromodynamics |
title | (F_K / F_\pi\) from Möbius domain-wall fermions solved on gradient-flowed HISQ ensembles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A23%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=(F_K%20/%20F_%5Cpi%5C)%20from%20M%C3%B6bius%20domain-wall%20fermions%20solved%20on%20gradient-flowed%20HISQ%20ensembles&rft.jtitle=arXiv.org&rft.au=Miller,%20Nolan&rft.date=2020-09-03&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2005.04795&rft_dat=%3Cproquest%3E2401515026%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2401515026&rft_id=info:pmid/&rfr_iscdi=true |