(F_K / F_\pi\) from Möbius domain-wall fermions solved on gradient-flowed HISQ ensembles

We report the results of a lattice quantum chromodynamics calculation of \(F_K/F_\pi\) using M\"{o}bius domain-wall fermions computed on gradient-flowed \(N_f=2+1+1\) highly-improved staggered quark (HISQ) ensembles. The calculation is performed with five values of the pion mass ranging from \(...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-09
Hauptverfasser: Miller, Nolan, Monge-Camacho, Henry, Chia Cheng Chang, Hörz, Ben, Rinaldi, Enrico, Howarth, Dean, Berkowitz, Evan, Brantley, David A, Arjun Singh Gambhir, Körber, Christopher, Monahan, Christopher J, Clark, M A, Joó, Bálint, Kurth, Thorsten, Nicholson, Amy, Orginos, Kostas, Vranas, Pavlos, Walker-Loud, André
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Miller, Nolan
Monge-Camacho, Henry
Chia Cheng Chang
Hörz, Ben
Rinaldi, Enrico
Howarth, Dean
Berkowitz, Evan
Brantley, David A
Arjun Singh Gambhir
Körber, Christopher
Monahan, Christopher J
Clark, M A
Joó, Bálint
Kurth, Thorsten
Nicholson, Amy
Orginos, Kostas
Vranas, Pavlos
Walker-Loud, André
description We report the results of a lattice quantum chromodynamics calculation of \(F_K/F_\pi\) using M\"{o}bius domain-wall fermions computed on gradient-flowed \(N_f=2+1+1\) highly-improved staggered quark (HISQ) ensembles. The calculation is performed with five values of the pion mass ranging from \(130 \lesssim m_\pi \lesssim 400\) MeV, four lattice spacings of \(a\sim 0.15, 0.12, 0.09\) and \(0.06\) fm and multiple values of the lattice volume. The interpolation/extrapolation to the physical pion and kaon mass point, the continuum, and infinite volume limits are performed with a variety of different extrapolation functions utilizing both the relevant mixed-action effective field theory expressions as well as discretization-enhanced continuum chiral perturbation theory formulas. We find that the \(a\sim0.06\) fm ensemble is helpful, but not necessary to achieve a subpercent determination of \(F_K/F_\pi\). We also include an estimate of the strong isospin breaking corrections and arrive at a final result of \(F_{K^\pm}/F_{\pi^\pm} = 1.1942(45)\) with all sources of statistical and systematic uncertainty included. This is consistent with the Flavour Lattice Averaging Group average value, providing an important benchmark for our lattice action. Combining our result with experimental measurements of the pion and kaon leptonic decays leads to a determination of \(|V_{us}|/|V_{ud}| = 0.2311(10)\).
doi_str_mv 10.48550/arxiv.2005.04795
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2401515026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2401515026</sourcerecordid><originalsourceid>FETCH-proquest_journals_24015150263</originalsourceid><addsrcrecordid>eNqNjrFqwzAURUWgENP6A7I96JIOdp5lq3bmUpNSMoR2CRiMjOUgI0uJXpz0y_oD-bF46Ad0unDOGS5jiwTjrBACV9L_6EvMEUWMWb4WMxbwNE2iIuN8zkKiHhH5a86FSAO2X5b1J6ygrKujrl6g826A7e230SNB6wapbXSVxkCn_KCdJSBnLqoFZ-HgZauVPUedcdcJbT6-dqAsqaExip7YQycNqfBvH9lz-f79tomO3p1GRee6d6O3k6p5holIxPQq_V91B76UR4k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2401515026</pqid></control><display><type>article</type><title>(F_K / F_\pi\) from Möbius domain-wall fermions solved on gradient-flowed HISQ ensembles</title><source>Free E- Journals</source><creator>Miller, Nolan ; Monge-Camacho, Henry ; Chia Cheng Chang ; Hörz, Ben ; Rinaldi, Enrico ; Howarth, Dean ; Berkowitz, Evan ; Brantley, David A ; Arjun Singh Gambhir ; Körber, Christopher ; Monahan, Christopher J ; Clark, M A ; Joó, Bálint ; Kurth, Thorsten ; Nicholson, Amy ; Orginos, Kostas ; Vranas, Pavlos ; Walker-Loud, André</creator><creatorcontrib>Miller, Nolan ; Monge-Camacho, Henry ; Chia Cheng Chang ; Hörz, Ben ; Rinaldi, Enrico ; Howarth, Dean ; Berkowitz, Evan ; Brantley, David A ; Arjun Singh Gambhir ; Körber, Christopher ; Monahan, Christopher J ; Clark, M A ; Joó, Bálint ; Kurth, Thorsten ; Nicholson, Amy ; Orginos, Kostas ; Vranas, Pavlos ; Walker-Loud, André</creatorcontrib><description>We report the results of a lattice quantum chromodynamics calculation of \(F_K/F_\pi\) using M\"{o}bius domain-wall fermions computed on gradient-flowed \(N_f=2+1+1\) highly-improved staggered quark (HISQ) ensembles. The calculation is performed with five values of the pion mass ranging from \(130 \lesssim m_\pi \lesssim 400\) MeV, four lattice spacings of \(a\sim 0.15, 0.12, 0.09\) and \(0.06\) fm and multiple values of the lattice volume. The interpolation/extrapolation to the physical pion and kaon mass point, the continuum, and infinite volume limits are performed with a variety of different extrapolation functions utilizing both the relevant mixed-action effective field theory expressions as well as discretization-enhanced continuum chiral perturbation theory formulas. We find that the \(a\sim0.06\) fm ensemble is helpful, but not necessary to achieve a subpercent determination of \(F_K/F_\pi\). We also include an estimate of the strong isospin breaking corrections and arrive at a final result of \(F_{K^\pm}/F_{\pi^\pm} = 1.1942(45)\) with all sources of statistical and systematic uncertainty included. This is consistent with the Flavour Lattice Averaging Group average value, providing an important benchmark for our lattice action. Combining our result with experimental measurements of the pion and kaon leptonic decays leads to a determination of \(|V_{us}|/|V_{ud}| = 0.2311(10)\).</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2005.04795</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Chiral dynamics ; Domain walls ; Extrapolation ; Fermions ; Field theory ; Interpolation ; Kaons ; Mathematical analysis ; Perturbation methods ; Perturbation theory ; Pions ; Quantum chromodynamics</subject><ispartof>arXiv.org, 2020-09</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784,27924</link.rule.ids></links><search><creatorcontrib>Miller, Nolan</creatorcontrib><creatorcontrib>Monge-Camacho, Henry</creatorcontrib><creatorcontrib>Chia Cheng Chang</creatorcontrib><creatorcontrib>Hörz, Ben</creatorcontrib><creatorcontrib>Rinaldi, Enrico</creatorcontrib><creatorcontrib>Howarth, Dean</creatorcontrib><creatorcontrib>Berkowitz, Evan</creatorcontrib><creatorcontrib>Brantley, David A</creatorcontrib><creatorcontrib>Arjun Singh Gambhir</creatorcontrib><creatorcontrib>Körber, Christopher</creatorcontrib><creatorcontrib>Monahan, Christopher J</creatorcontrib><creatorcontrib>Clark, M A</creatorcontrib><creatorcontrib>Joó, Bálint</creatorcontrib><creatorcontrib>Kurth, Thorsten</creatorcontrib><creatorcontrib>Nicholson, Amy</creatorcontrib><creatorcontrib>Orginos, Kostas</creatorcontrib><creatorcontrib>Vranas, Pavlos</creatorcontrib><creatorcontrib>Walker-Loud, André</creatorcontrib><title>(F_K / F_\pi\) from Möbius domain-wall fermions solved on gradient-flowed HISQ ensembles</title><title>arXiv.org</title><description>We report the results of a lattice quantum chromodynamics calculation of \(F_K/F_\pi\) using M\"{o}bius domain-wall fermions computed on gradient-flowed \(N_f=2+1+1\) highly-improved staggered quark (HISQ) ensembles. The calculation is performed with five values of the pion mass ranging from \(130 \lesssim m_\pi \lesssim 400\) MeV, four lattice spacings of \(a\sim 0.15, 0.12, 0.09\) and \(0.06\) fm and multiple values of the lattice volume. The interpolation/extrapolation to the physical pion and kaon mass point, the continuum, and infinite volume limits are performed with a variety of different extrapolation functions utilizing both the relevant mixed-action effective field theory expressions as well as discretization-enhanced continuum chiral perturbation theory formulas. We find that the \(a\sim0.06\) fm ensemble is helpful, but not necessary to achieve a subpercent determination of \(F_K/F_\pi\). We also include an estimate of the strong isospin breaking corrections and arrive at a final result of \(F_{K^\pm}/F_{\pi^\pm} = 1.1942(45)\) with all sources of statistical and systematic uncertainty included. This is consistent with the Flavour Lattice Averaging Group average value, providing an important benchmark for our lattice action. Combining our result with experimental measurements of the pion and kaon leptonic decays leads to a determination of \(|V_{us}|/|V_{ud}| = 0.2311(10)\).</description><subject>Chiral dynamics</subject><subject>Domain walls</subject><subject>Extrapolation</subject><subject>Fermions</subject><subject>Field theory</subject><subject>Interpolation</subject><subject>Kaons</subject><subject>Mathematical analysis</subject><subject>Perturbation methods</subject><subject>Perturbation theory</subject><subject>Pions</subject><subject>Quantum chromodynamics</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjrFqwzAURUWgENP6A7I96JIOdp5lq3bmUpNSMoR2CRiMjOUgI0uJXpz0y_oD-bF46Ad0unDOGS5jiwTjrBACV9L_6EvMEUWMWb4WMxbwNE2iIuN8zkKiHhH5a86FSAO2X5b1J6ygrKujrl6g826A7e230SNB6wapbXSVxkCn_KCdJSBnLqoFZ-HgZauVPUedcdcJbT6-dqAsqaExip7YQycNqfBvH9lz-f79tomO3p1GRee6d6O3k6p5holIxPQq_V91B76UR4k</recordid><startdate>20200903</startdate><enddate>20200903</enddate><creator>Miller, Nolan</creator><creator>Monge-Camacho, Henry</creator><creator>Chia Cheng Chang</creator><creator>Hörz, Ben</creator><creator>Rinaldi, Enrico</creator><creator>Howarth, Dean</creator><creator>Berkowitz, Evan</creator><creator>Brantley, David A</creator><creator>Arjun Singh Gambhir</creator><creator>Körber, Christopher</creator><creator>Monahan, Christopher J</creator><creator>Clark, M A</creator><creator>Joó, Bálint</creator><creator>Kurth, Thorsten</creator><creator>Nicholson, Amy</creator><creator>Orginos, Kostas</creator><creator>Vranas, Pavlos</creator><creator>Walker-Loud, André</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200903</creationdate><title>(F_K / F_\pi\) from Möbius domain-wall fermions solved on gradient-flowed HISQ ensembles</title><author>Miller, Nolan ; Monge-Camacho, Henry ; Chia Cheng Chang ; Hörz, Ben ; Rinaldi, Enrico ; Howarth, Dean ; Berkowitz, Evan ; Brantley, David A ; Arjun Singh Gambhir ; Körber, Christopher ; Monahan, Christopher J ; Clark, M A ; Joó, Bálint ; Kurth, Thorsten ; Nicholson, Amy ; Orginos, Kostas ; Vranas, Pavlos ; Walker-Loud, André</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24015150263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chiral dynamics</topic><topic>Domain walls</topic><topic>Extrapolation</topic><topic>Fermions</topic><topic>Field theory</topic><topic>Interpolation</topic><topic>Kaons</topic><topic>Mathematical analysis</topic><topic>Perturbation methods</topic><topic>Perturbation theory</topic><topic>Pions</topic><topic>Quantum chromodynamics</topic><toplevel>online_resources</toplevel><creatorcontrib>Miller, Nolan</creatorcontrib><creatorcontrib>Monge-Camacho, Henry</creatorcontrib><creatorcontrib>Chia Cheng Chang</creatorcontrib><creatorcontrib>Hörz, Ben</creatorcontrib><creatorcontrib>Rinaldi, Enrico</creatorcontrib><creatorcontrib>Howarth, Dean</creatorcontrib><creatorcontrib>Berkowitz, Evan</creatorcontrib><creatorcontrib>Brantley, David A</creatorcontrib><creatorcontrib>Arjun Singh Gambhir</creatorcontrib><creatorcontrib>Körber, Christopher</creatorcontrib><creatorcontrib>Monahan, Christopher J</creatorcontrib><creatorcontrib>Clark, M A</creatorcontrib><creatorcontrib>Joó, Bálint</creatorcontrib><creatorcontrib>Kurth, Thorsten</creatorcontrib><creatorcontrib>Nicholson, Amy</creatorcontrib><creatorcontrib>Orginos, Kostas</creatorcontrib><creatorcontrib>Vranas, Pavlos</creatorcontrib><creatorcontrib>Walker-Loud, André</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miller, Nolan</au><au>Monge-Camacho, Henry</au><au>Chia Cheng Chang</au><au>Hörz, Ben</au><au>Rinaldi, Enrico</au><au>Howarth, Dean</au><au>Berkowitz, Evan</au><au>Brantley, David A</au><au>Arjun Singh Gambhir</au><au>Körber, Christopher</au><au>Monahan, Christopher J</au><au>Clark, M A</au><au>Joó, Bálint</au><au>Kurth, Thorsten</au><au>Nicholson, Amy</au><au>Orginos, Kostas</au><au>Vranas, Pavlos</au><au>Walker-Loud, André</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>(F_K / F_\pi\) from Möbius domain-wall fermions solved on gradient-flowed HISQ ensembles</atitle><jtitle>arXiv.org</jtitle><date>2020-09-03</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>We report the results of a lattice quantum chromodynamics calculation of \(F_K/F_\pi\) using M\"{o}bius domain-wall fermions computed on gradient-flowed \(N_f=2+1+1\) highly-improved staggered quark (HISQ) ensembles. The calculation is performed with five values of the pion mass ranging from \(130 \lesssim m_\pi \lesssim 400\) MeV, four lattice spacings of \(a\sim 0.15, 0.12, 0.09\) and \(0.06\) fm and multiple values of the lattice volume. The interpolation/extrapolation to the physical pion and kaon mass point, the continuum, and infinite volume limits are performed with a variety of different extrapolation functions utilizing both the relevant mixed-action effective field theory expressions as well as discretization-enhanced continuum chiral perturbation theory formulas. We find that the \(a\sim0.06\) fm ensemble is helpful, but not necessary to achieve a subpercent determination of \(F_K/F_\pi\). We also include an estimate of the strong isospin breaking corrections and arrive at a final result of \(F_{K^\pm}/F_{\pi^\pm} = 1.1942(45)\) with all sources of statistical and systematic uncertainty included. This is consistent with the Flavour Lattice Averaging Group average value, providing an important benchmark for our lattice action. Combining our result with experimental measurements of the pion and kaon leptonic decays leads to a determination of \(|V_{us}|/|V_{ud}| = 0.2311(10)\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2005.04795</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2401515026
source Free E- Journals
subjects Chiral dynamics
Domain walls
Extrapolation
Fermions
Field theory
Interpolation
Kaons
Mathematical analysis
Perturbation methods
Perturbation theory
Pions
Quantum chromodynamics
title (F_K / F_\pi\) from Möbius domain-wall fermions solved on gradient-flowed HISQ ensembles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A23%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=(F_K%20/%20F_%5Cpi%5C)%20from%20M%C3%B6bius%20domain-wall%20fermions%20solved%20on%20gradient-flowed%20HISQ%20ensembles&rft.jtitle=arXiv.org&rft.au=Miller,%20Nolan&rft.date=2020-09-03&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2005.04795&rft_dat=%3Cproquest%3E2401515026%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2401515026&rft_id=info:pmid/&rfr_iscdi=true