Probing the energy conversion process in piezoelectric-driven electrochemical self-charging supercapacitor power cell using piezoelectrochemical spectroscopy
The design and development of self-charging supercapacitor power cells are rapidly gaining interest due to their ability to convert and store energy in an integrated device. Here, we have demonstrated the fabrication of a self-charging supercapacitor using siloxene sheets as electrodes and siloxene-...
Gespeichert in:
Veröffentlicht in: | Nature communications 2020-05, Vol.11 (1), p.2351-2351, Article 2351 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2351 |
---|---|
container_issue | 1 |
container_start_page | 2351 |
container_title | Nature communications |
container_volume | 11 |
creator | Krishnamoorthy, Karthikeyan Pazhamalai, Parthiban Mariappan, Vimal Kumar Nardekar, Swapnil Shital Sahoo, Surjit Kim, Sang-Jae |
description | The design and development of self-charging supercapacitor power cells are rapidly gaining interest due to their ability to convert and store energy in an integrated device. Here, we have demonstrated the fabrication of a self-charging supercapacitor using siloxene sheets as electrodes and siloxene-based polymeric piezofiber separator immobilized with an ionogel electrolyte. The self-charging properties of the fabricated device subjected to various levels of compressive forces showed their ability to self-charge up to a maximum of 207 mV. The mechanism of self-charging process in the fabricated device is discussed via “piezoelectrochemical effect” with the aid of piezoelectrochemical spectroscopy measurements. These studies revealed the direct evidence of the piezoelectrochemical phenomenon involved in the energy conversion and storage process in the fabricated device. This study can provide insight towards understanding the energy conversion process in self-charging supercapacitors, which is of significance considering the state of the art of piezoelectric driven self-charging supercapacitors.
Devices that are capable of energy harvesting and storage are attractive for meeting daily energy demands, however they are limited by efficiency. Here the authors fabricate a siloxene-based self-charging supercapacitor power cell and probe the piezoelectrochemical effect involved in the charging process. |
doi_str_mv | 10.1038/s41467-020-15808-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_journals_2401047832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_118c99fb86a54b9791fef41bd1cc48c1</doaj_id><sourcerecordid>2401047832</sourcerecordid><originalsourceid>FETCH-LOGICAL-c606t-5eb3e1d31c760865780fe06319f48dff87caf221509d4de4bf1adfc857ccb1e03</originalsourceid><addsrcrecordid>eNqNks-O0zAQxiMEYldlX4ADisQFCQXs2EmcCxKq-LPSSnCAs-VMxqmr1A520lX3XXhXnGYpXQ4IXzz2fPPTePwlyXNK3lDCxNvAKS-rjOQko4UgIisfJZc54TSjVc4en8UXyVUIWxIXq6ng_GlywXJWs4rXl8nPr941xnbpuMEULfrukIKze_TBOJsO3gGGkJoYGrxz2COM3kDWerNHmy5nBxvcGVB9GrDXGWyU72ZmmAb0oAYFZnQ-Hdwt-hSw79MpzPkz5BliOJ4DuOHwLHmiVR_w6n5fJd8_fvi2_pzdfPl0vX5_k0FJyjErsGFIW0ahKokoi0oQjaRktNZctFqLCpTOc1qQuuUt8kZT1WoQRQXQUCRslVwv3NaprRy82Sl_kE4ZebxwvpPKjwZ6lJQKqGvdiFIVvKmrmmrUnDYtBeACaGS9W1jD1OywBbSjV_0D6MOMNRvZub2scsrjp0bAq3uAdz8mDKPcmTBPTVl0U5A5J1SQgpG575d_Sbdu8jaO6qgivBLxq1dJvqggjjV41KdmKJGzmeRiJhnNJI9mkmUsenH-jFPJb-tEwetFcIuN0wEMWsCTLLqtKERZ13w23tyD-H_12oxqjPZbu8mOsZQtpSHKbYf-zyP_0f8vPmL7xQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2401047832</pqid></control><display><type>article</type><title>Probing the energy conversion process in piezoelectric-driven electrochemical self-charging supercapacitor power cell using piezoelectrochemical spectroscopy</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Nature Free</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Springer Nature OA/Free Journals</source><creator>Krishnamoorthy, Karthikeyan ; Pazhamalai, Parthiban ; Mariappan, Vimal Kumar ; Nardekar, Swapnil Shital ; Sahoo, Surjit ; Kim, Sang-Jae</creator><creatorcontrib>Krishnamoorthy, Karthikeyan ; Pazhamalai, Parthiban ; Mariappan, Vimal Kumar ; Nardekar, Swapnil Shital ; Sahoo, Surjit ; Kim, Sang-Jae</creatorcontrib><description>The design and development of self-charging supercapacitor power cells are rapidly gaining interest due to their ability to convert and store energy in an integrated device. Here, we have demonstrated the fabrication of a self-charging supercapacitor using siloxene sheets as electrodes and siloxene-based polymeric piezofiber separator immobilized with an ionogel electrolyte. The self-charging properties of the fabricated device subjected to various levels of compressive forces showed their ability to self-charge up to a maximum of 207 mV. The mechanism of self-charging process in the fabricated device is discussed via “piezoelectrochemical effect” with the aid of piezoelectrochemical spectroscopy measurements. These studies revealed the direct evidence of the piezoelectrochemical phenomenon involved in the energy conversion and storage process in the fabricated device. This study can provide insight towards understanding the energy conversion process in self-charging supercapacitors, which is of significance considering the state of the art of piezoelectric driven self-charging supercapacitors.
Devices that are capable of energy harvesting and storage are attractive for meeting daily energy demands, however they are limited by efficiency. Here the authors fabricate a siloxene-based self-charging supercapacitor power cell and probe the piezoelectrochemical effect involved in the charging process.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-020-15808-6</identifier><identifier>PMID: 32393749</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/133 ; 140/146 ; 147/135 ; 147/143 ; 639/301 ; 639/4077 ; 639/925 ; Charging ; Electrochemistry ; Electrolytic cells ; Energy ; Energy conversion ; Energy conversion efficiency ; Energy harvesting ; Energy storage ; Fabrication ; Humanities and Social Sciences ; multidisciplinary ; Multidisciplinary Sciences ; Piezoelectricity ; Science ; Science & Technology ; Science & Technology - Other Topics ; Science (multidisciplinary) ; Separators ; Spectroscopy ; Spectrum analysis ; Supercapacitors</subject><ispartof>Nature communications, 2020-05, Vol.11 (1), p.2351-2351, Article 2351</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>216</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000558699400002</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c606t-5eb3e1d31c760865780fe06319f48dff87caf221509d4de4bf1adfc857ccb1e03</citedby><cites>FETCH-LOGICAL-c606t-5eb3e1d31c760865780fe06319f48dff87caf221509d4de4bf1adfc857ccb1e03</cites><orcidid>0000-0001-6400-8413 ; 0000-0002-5378-1790 ; 0000-0002-8519-3010 ; 0000-0002-7150-7920 ; 0000-0003-0460-5763 ; 0000-0002-5066-2622</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7214414/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7214414/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2115,27929,27930,28253,41125,42194,51581,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32393749$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Krishnamoorthy, Karthikeyan</creatorcontrib><creatorcontrib>Pazhamalai, Parthiban</creatorcontrib><creatorcontrib>Mariappan, Vimal Kumar</creatorcontrib><creatorcontrib>Nardekar, Swapnil Shital</creatorcontrib><creatorcontrib>Sahoo, Surjit</creatorcontrib><creatorcontrib>Kim, Sang-Jae</creatorcontrib><title>Probing the energy conversion process in piezoelectric-driven electrochemical self-charging supercapacitor power cell using piezoelectrochemical spectroscopy</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>NAT COMMUN</addtitle><addtitle>Nat Commun</addtitle><description>The design and development of self-charging supercapacitor power cells are rapidly gaining interest due to their ability to convert and store energy in an integrated device. Here, we have demonstrated the fabrication of a self-charging supercapacitor using siloxene sheets as electrodes and siloxene-based polymeric piezofiber separator immobilized with an ionogel electrolyte. The self-charging properties of the fabricated device subjected to various levels of compressive forces showed their ability to self-charge up to a maximum of 207 mV. The mechanism of self-charging process in the fabricated device is discussed via “piezoelectrochemical effect” with the aid of piezoelectrochemical spectroscopy measurements. These studies revealed the direct evidence of the piezoelectrochemical phenomenon involved in the energy conversion and storage process in the fabricated device. This study can provide insight towards understanding the energy conversion process in self-charging supercapacitors, which is of significance considering the state of the art of piezoelectric driven self-charging supercapacitors.
Devices that are capable of energy harvesting and storage are attractive for meeting daily energy demands, however they are limited by efficiency. Here the authors fabricate a siloxene-based self-charging supercapacitor power cell and probe the piezoelectrochemical effect involved in the charging process.</description><subject>140/133</subject><subject>140/146</subject><subject>147/135</subject><subject>147/143</subject><subject>639/301</subject><subject>639/4077</subject><subject>639/925</subject><subject>Charging</subject><subject>Electrochemistry</subject><subject>Electrolytic cells</subject><subject>Energy</subject><subject>Energy conversion</subject><subject>Energy conversion efficiency</subject><subject>Energy harvesting</subject><subject>Energy storage</subject><subject>Fabrication</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Multidisciplinary Sciences</subject><subject>Piezoelectricity</subject><subject>Science</subject><subject>Science & Technology</subject><subject>Science & Technology - Other Topics</subject><subject>Science (multidisciplinary)</subject><subject>Separators</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Supercapacitors</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AOWDO</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNks-O0zAQxiMEYldlX4ADisQFCQXs2EmcCxKq-LPSSnCAs-VMxqmr1A520lX3XXhXnGYpXQ4IXzz2fPPTePwlyXNK3lDCxNvAKS-rjOQko4UgIisfJZc54TSjVc4en8UXyVUIWxIXq6ng_GlywXJWs4rXl8nPr941xnbpuMEULfrukIKze_TBOJsO3gGGkJoYGrxz2COM3kDWerNHmy5nBxvcGVB9GrDXGWyU72ZmmAb0oAYFZnQ-Hdwt-hSw79MpzPkz5BliOJ4DuOHwLHmiVR_w6n5fJd8_fvi2_pzdfPl0vX5_k0FJyjErsGFIW0ahKokoi0oQjaRktNZctFqLCpTOc1qQuuUt8kZT1WoQRQXQUCRslVwv3NaprRy82Sl_kE4ZebxwvpPKjwZ6lJQKqGvdiFIVvKmrmmrUnDYtBeACaGS9W1jD1OywBbSjV_0D6MOMNRvZub2scsrjp0bAq3uAdz8mDKPcmTBPTVl0U5A5J1SQgpG575d_Sbdu8jaO6qgivBLxq1dJvqggjjV41KdmKJGzmeRiJhnNJI9mkmUsenH-jFPJb-tEwetFcIuN0wEMWsCTLLqtKERZ13w23tyD-H_12oxqjPZbu8mOsZQtpSHKbYf-zyP_0f8vPmL7xQ</recordid><startdate>20200511</startdate><enddate>20200511</enddate><creator>Krishnamoorthy, Karthikeyan</creator><creator>Pazhamalai, Parthiban</creator><creator>Mariappan, Vimal Kumar</creator><creator>Nardekar, Swapnil Shital</creator><creator>Sahoo, Surjit</creator><creator>Kim, Sang-Jae</creator><general>Nature Publishing Group UK</general><general>Springer Nature</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6400-8413</orcidid><orcidid>https://orcid.org/0000-0002-5378-1790</orcidid><orcidid>https://orcid.org/0000-0002-8519-3010</orcidid><orcidid>https://orcid.org/0000-0002-7150-7920</orcidid><orcidid>https://orcid.org/0000-0003-0460-5763</orcidid><orcidid>https://orcid.org/0000-0002-5066-2622</orcidid></search><sort><creationdate>20200511</creationdate><title>Probing the energy conversion process in piezoelectric-driven electrochemical self-charging supercapacitor power cell using piezoelectrochemical spectroscopy</title><author>Krishnamoorthy, Karthikeyan ; Pazhamalai, Parthiban ; Mariappan, Vimal Kumar ; Nardekar, Swapnil Shital ; Sahoo, Surjit ; Kim, Sang-Jae</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c606t-5eb3e1d31c760865780fe06319f48dff87caf221509d4de4bf1adfc857ccb1e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>140/133</topic><topic>140/146</topic><topic>147/135</topic><topic>147/143</topic><topic>639/301</topic><topic>639/4077</topic><topic>639/925</topic><topic>Charging</topic><topic>Electrochemistry</topic><topic>Electrolytic cells</topic><topic>Energy</topic><topic>Energy conversion</topic><topic>Energy conversion efficiency</topic><topic>Energy harvesting</topic><topic>Energy storage</topic><topic>Fabrication</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Multidisciplinary Sciences</topic><topic>Piezoelectricity</topic><topic>Science</topic><topic>Science & Technology</topic><topic>Science & Technology - Other Topics</topic><topic>Science (multidisciplinary)</topic><topic>Separators</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Supercapacitors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krishnamoorthy, Karthikeyan</creatorcontrib><creatorcontrib>Pazhamalai, Parthiban</creatorcontrib><creatorcontrib>Mariappan, Vimal Kumar</creatorcontrib><creatorcontrib>Nardekar, Swapnil Shital</creatorcontrib><creatorcontrib>Sahoo, Surjit</creatorcontrib><creatorcontrib>Kim, Sang-Jae</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krishnamoorthy, Karthikeyan</au><au>Pazhamalai, Parthiban</au><au>Mariappan, Vimal Kumar</au><au>Nardekar, Swapnil Shital</au><au>Sahoo, Surjit</au><au>Kim, Sang-Jae</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probing the energy conversion process in piezoelectric-driven electrochemical self-charging supercapacitor power cell using piezoelectrochemical spectroscopy</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><stitle>NAT COMMUN</stitle><addtitle>Nat Commun</addtitle><date>2020-05-11</date><risdate>2020</risdate><volume>11</volume><issue>1</issue><spage>2351</spage><epage>2351</epage><pages>2351-2351</pages><artnum>2351</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The design and development of self-charging supercapacitor power cells are rapidly gaining interest due to their ability to convert and store energy in an integrated device. Here, we have demonstrated the fabrication of a self-charging supercapacitor using siloxene sheets as electrodes and siloxene-based polymeric piezofiber separator immobilized with an ionogel electrolyte. The self-charging properties of the fabricated device subjected to various levels of compressive forces showed their ability to self-charge up to a maximum of 207 mV. The mechanism of self-charging process in the fabricated device is discussed via “piezoelectrochemical effect” with the aid of piezoelectrochemical spectroscopy measurements. These studies revealed the direct evidence of the piezoelectrochemical phenomenon involved in the energy conversion and storage process in the fabricated device. This study can provide insight towards understanding the energy conversion process in self-charging supercapacitors, which is of significance considering the state of the art of piezoelectric driven self-charging supercapacitors.
Devices that are capable of energy harvesting and storage are attractive for meeting daily energy demands, however they are limited by efficiency. Here the authors fabricate a siloxene-based self-charging supercapacitor power cell and probe the piezoelectrochemical effect involved in the charging process.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32393749</pmid><doi>10.1038/s41467-020-15808-6</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6400-8413</orcidid><orcidid>https://orcid.org/0000-0002-5378-1790</orcidid><orcidid>https://orcid.org/0000-0002-8519-3010</orcidid><orcidid>https://orcid.org/0000-0002-7150-7920</orcidid><orcidid>https://orcid.org/0000-0003-0460-5763</orcidid><orcidid>https://orcid.org/0000-0002-5066-2622</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2020-05, Vol.11 (1), p.2351-2351, Article 2351 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_proquest_journals_2401047832 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Nature Free; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central; Alma/SFX Local Collection; Springer Nature OA/Free Journals |
subjects | 140/133 140/146 147/135 147/143 639/301 639/4077 639/925 Charging Electrochemistry Electrolytic cells Energy Energy conversion Energy conversion efficiency Energy harvesting Energy storage Fabrication Humanities and Social Sciences multidisciplinary Multidisciplinary Sciences Piezoelectricity Science Science & Technology Science & Technology - Other Topics Science (multidisciplinary) Separators Spectroscopy Spectrum analysis Supercapacitors |
title | Probing the energy conversion process in piezoelectric-driven electrochemical self-charging supercapacitor power cell using piezoelectrochemical spectroscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T22%3A50%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probing%20the%20energy%20conversion%20process%20in%20piezoelectric-driven%20electrochemical%20self-charging%20supercapacitor%20power%20cell%20using%20piezoelectrochemical%20spectroscopy&rft.jtitle=Nature%20communications&rft.au=Krishnamoorthy,%20Karthikeyan&rft.date=2020-05-11&rft.volume=11&rft.issue=1&rft.spage=2351&rft.epage=2351&rft.pages=2351-2351&rft.artnum=2351&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-020-15808-6&rft_dat=%3Cproquest_webof%3E2401047832%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2401047832&rft_id=info:pmid/32393749&rft_doaj_id=oai_doaj_org_article_118c99fb86a54b9791fef41bd1cc48c1&rfr_iscdi=true |