Probing the energy conversion process in piezoelectric-driven electrochemical self-charging supercapacitor power cell using piezoelectrochemical spectroscopy

The design and development of self-charging supercapacitor power cells are rapidly gaining interest due to their ability to convert and store energy in an integrated device. Here, we have demonstrated the fabrication of a self-charging supercapacitor using siloxene sheets as electrodes and siloxene-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2020-05, Vol.11 (1), p.2351-2351, Article 2351
Hauptverfasser: Krishnamoorthy, Karthikeyan, Pazhamalai, Parthiban, Mariappan, Vimal Kumar, Nardekar, Swapnil Shital, Sahoo, Surjit, Kim, Sang-Jae
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2351
container_issue 1
container_start_page 2351
container_title Nature communications
container_volume 11
creator Krishnamoorthy, Karthikeyan
Pazhamalai, Parthiban
Mariappan, Vimal Kumar
Nardekar, Swapnil Shital
Sahoo, Surjit
Kim, Sang-Jae
description The design and development of self-charging supercapacitor power cells are rapidly gaining interest due to their ability to convert and store energy in an integrated device. Here, we have demonstrated the fabrication of a self-charging supercapacitor using siloxene sheets as electrodes and siloxene-based polymeric piezofiber separator immobilized with an ionogel electrolyte. The self-charging properties of the fabricated device subjected to various levels of compressive forces showed their ability to self-charge up to a maximum of 207 mV. The mechanism of self-charging process in the fabricated device is discussed via “piezoelectrochemical effect” with the aid of piezoelectrochemical spectroscopy measurements. These studies revealed the direct evidence of the piezoelectrochemical phenomenon involved in the energy conversion and storage process in the fabricated device. This study can provide insight towards understanding the energy conversion process in self-charging supercapacitors, which is of significance considering the state of the art of piezoelectric driven self-charging supercapacitors. Devices that are capable of energy harvesting and storage are attractive for meeting daily energy demands, however they are limited by efficiency. Here the authors fabricate a siloxene-based self-charging supercapacitor power cell and probe the piezoelectrochemical effect involved in the charging process.
doi_str_mv 10.1038/s41467-020-15808-6
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_journals_2401047832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_118c99fb86a54b9791fef41bd1cc48c1</doaj_id><sourcerecordid>2401047832</sourcerecordid><originalsourceid>FETCH-LOGICAL-c606t-5eb3e1d31c760865780fe06319f48dff87caf221509d4de4bf1adfc857ccb1e03</originalsourceid><addsrcrecordid>eNqNks-O0zAQxiMEYldlX4ADisQFCQXs2EmcCxKq-LPSSnCAs-VMxqmr1A520lX3XXhXnGYpXQ4IXzz2fPPTePwlyXNK3lDCxNvAKS-rjOQko4UgIisfJZc54TSjVc4en8UXyVUIWxIXq6ng_GlywXJWs4rXl8nPr941xnbpuMEULfrukIKze_TBOJsO3gGGkJoYGrxz2COM3kDWerNHmy5nBxvcGVB9GrDXGWyU72ZmmAb0oAYFZnQ-Hdwt-hSw79MpzPkz5BliOJ4DuOHwLHmiVR_w6n5fJd8_fvi2_pzdfPl0vX5_k0FJyjErsGFIW0ahKokoi0oQjaRktNZctFqLCpTOc1qQuuUt8kZT1WoQRQXQUCRslVwv3NaprRy82Sl_kE4ZebxwvpPKjwZ6lJQKqGvdiFIVvKmrmmrUnDYtBeACaGS9W1jD1OywBbSjV_0D6MOMNRvZub2scsrjp0bAq3uAdz8mDKPcmTBPTVl0U5A5J1SQgpG575d_Sbdu8jaO6qgivBLxq1dJvqggjjV41KdmKJGzmeRiJhnNJI9mkmUsenH-jFPJb-tEwetFcIuN0wEMWsCTLLqtKERZ13w23tyD-H_12oxqjPZbu8mOsZQtpSHKbYf-zyP_0f8vPmL7xQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2401047832</pqid></control><display><type>article</type><title>Probing the energy conversion process in piezoelectric-driven electrochemical self-charging supercapacitor power cell using piezoelectrochemical spectroscopy</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Nature Free</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Springer Nature OA/Free Journals</source><creator>Krishnamoorthy, Karthikeyan ; Pazhamalai, Parthiban ; Mariappan, Vimal Kumar ; Nardekar, Swapnil Shital ; Sahoo, Surjit ; Kim, Sang-Jae</creator><creatorcontrib>Krishnamoorthy, Karthikeyan ; Pazhamalai, Parthiban ; Mariappan, Vimal Kumar ; Nardekar, Swapnil Shital ; Sahoo, Surjit ; Kim, Sang-Jae</creatorcontrib><description>The design and development of self-charging supercapacitor power cells are rapidly gaining interest due to their ability to convert and store energy in an integrated device. Here, we have demonstrated the fabrication of a self-charging supercapacitor using siloxene sheets as electrodes and siloxene-based polymeric piezofiber separator immobilized with an ionogel electrolyte. The self-charging properties of the fabricated device subjected to various levels of compressive forces showed their ability to self-charge up to a maximum of 207 mV. The mechanism of self-charging process in the fabricated device is discussed via “piezoelectrochemical effect” with the aid of piezoelectrochemical spectroscopy measurements. These studies revealed the direct evidence of the piezoelectrochemical phenomenon involved in the energy conversion and storage process in the fabricated device. This study can provide insight towards understanding the energy conversion process in self-charging supercapacitors, which is of significance considering the state of the art of piezoelectric driven self-charging supercapacitors. Devices that are capable of energy harvesting and storage are attractive for meeting daily energy demands, however they are limited by efficiency. Here the authors fabricate a siloxene-based self-charging supercapacitor power cell and probe the piezoelectrochemical effect involved in the charging process.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-020-15808-6</identifier><identifier>PMID: 32393749</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/133 ; 140/146 ; 147/135 ; 147/143 ; 639/301 ; 639/4077 ; 639/925 ; Charging ; Electrochemistry ; Electrolytic cells ; Energy ; Energy conversion ; Energy conversion efficiency ; Energy harvesting ; Energy storage ; Fabrication ; Humanities and Social Sciences ; multidisciplinary ; Multidisciplinary Sciences ; Piezoelectricity ; Science ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; Science (multidisciplinary) ; Separators ; Spectroscopy ; Spectrum analysis ; Supercapacitors</subject><ispartof>Nature communications, 2020-05, Vol.11 (1), p.2351-2351, Article 2351</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>216</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000558699400002</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c606t-5eb3e1d31c760865780fe06319f48dff87caf221509d4de4bf1adfc857ccb1e03</citedby><cites>FETCH-LOGICAL-c606t-5eb3e1d31c760865780fe06319f48dff87caf221509d4de4bf1adfc857ccb1e03</cites><orcidid>0000-0001-6400-8413 ; 0000-0002-5378-1790 ; 0000-0002-8519-3010 ; 0000-0002-7150-7920 ; 0000-0003-0460-5763 ; 0000-0002-5066-2622</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7214414/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7214414/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2115,27929,27930,28253,41125,42194,51581,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32393749$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Krishnamoorthy, Karthikeyan</creatorcontrib><creatorcontrib>Pazhamalai, Parthiban</creatorcontrib><creatorcontrib>Mariappan, Vimal Kumar</creatorcontrib><creatorcontrib>Nardekar, Swapnil Shital</creatorcontrib><creatorcontrib>Sahoo, Surjit</creatorcontrib><creatorcontrib>Kim, Sang-Jae</creatorcontrib><title>Probing the energy conversion process in piezoelectric-driven electrochemical self-charging supercapacitor power cell using piezoelectrochemical spectroscopy</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>NAT COMMUN</addtitle><addtitle>Nat Commun</addtitle><description>The design and development of self-charging supercapacitor power cells are rapidly gaining interest due to their ability to convert and store energy in an integrated device. Here, we have demonstrated the fabrication of a self-charging supercapacitor using siloxene sheets as electrodes and siloxene-based polymeric piezofiber separator immobilized with an ionogel electrolyte. The self-charging properties of the fabricated device subjected to various levels of compressive forces showed their ability to self-charge up to a maximum of 207 mV. The mechanism of self-charging process in the fabricated device is discussed via “piezoelectrochemical effect” with the aid of piezoelectrochemical spectroscopy measurements. These studies revealed the direct evidence of the piezoelectrochemical phenomenon involved in the energy conversion and storage process in the fabricated device. This study can provide insight towards understanding the energy conversion process in self-charging supercapacitors, which is of significance considering the state of the art of piezoelectric driven self-charging supercapacitors. Devices that are capable of energy harvesting and storage are attractive for meeting daily energy demands, however they are limited by efficiency. Here the authors fabricate a siloxene-based self-charging supercapacitor power cell and probe the piezoelectrochemical effect involved in the charging process.</description><subject>140/133</subject><subject>140/146</subject><subject>147/135</subject><subject>147/143</subject><subject>639/301</subject><subject>639/4077</subject><subject>639/925</subject><subject>Charging</subject><subject>Electrochemistry</subject><subject>Electrolytic cells</subject><subject>Energy</subject><subject>Energy conversion</subject><subject>Energy conversion efficiency</subject><subject>Energy harvesting</subject><subject>Energy storage</subject><subject>Fabrication</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Multidisciplinary Sciences</subject><subject>Piezoelectricity</subject><subject>Science</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Science (multidisciplinary)</subject><subject>Separators</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Supercapacitors</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AOWDO</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNks-O0zAQxiMEYldlX4ADisQFCQXs2EmcCxKq-LPSSnCAs-VMxqmr1A520lX3XXhXnGYpXQ4IXzz2fPPTePwlyXNK3lDCxNvAKS-rjOQko4UgIisfJZc54TSjVc4en8UXyVUIWxIXq6ng_GlywXJWs4rXl8nPr941xnbpuMEULfrukIKze_TBOJsO3gGGkJoYGrxz2COM3kDWerNHmy5nBxvcGVB9GrDXGWyU72ZmmAb0oAYFZnQ-Hdwt-hSw79MpzPkz5BliOJ4DuOHwLHmiVR_w6n5fJd8_fvi2_pzdfPl0vX5_k0FJyjErsGFIW0ahKokoi0oQjaRktNZctFqLCpTOc1qQuuUt8kZT1WoQRQXQUCRslVwv3NaprRy82Sl_kE4ZebxwvpPKjwZ6lJQKqGvdiFIVvKmrmmrUnDYtBeACaGS9W1jD1OywBbSjV_0D6MOMNRvZub2scsrjp0bAq3uAdz8mDKPcmTBPTVl0U5A5J1SQgpG575d_Sbdu8jaO6qgivBLxq1dJvqggjjV41KdmKJGzmeRiJhnNJI9mkmUsenH-jFPJb-tEwetFcIuN0wEMWsCTLLqtKERZ13w23tyD-H_12oxqjPZbu8mOsZQtpSHKbYf-zyP_0f8vPmL7xQ</recordid><startdate>20200511</startdate><enddate>20200511</enddate><creator>Krishnamoorthy, Karthikeyan</creator><creator>Pazhamalai, Parthiban</creator><creator>Mariappan, Vimal Kumar</creator><creator>Nardekar, Swapnil Shital</creator><creator>Sahoo, Surjit</creator><creator>Kim, Sang-Jae</creator><general>Nature Publishing Group UK</general><general>Springer Nature</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6400-8413</orcidid><orcidid>https://orcid.org/0000-0002-5378-1790</orcidid><orcidid>https://orcid.org/0000-0002-8519-3010</orcidid><orcidid>https://orcid.org/0000-0002-7150-7920</orcidid><orcidid>https://orcid.org/0000-0003-0460-5763</orcidid><orcidid>https://orcid.org/0000-0002-5066-2622</orcidid></search><sort><creationdate>20200511</creationdate><title>Probing the energy conversion process in piezoelectric-driven electrochemical self-charging supercapacitor power cell using piezoelectrochemical spectroscopy</title><author>Krishnamoorthy, Karthikeyan ; Pazhamalai, Parthiban ; Mariappan, Vimal Kumar ; Nardekar, Swapnil Shital ; Sahoo, Surjit ; Kim, Sang-Jae</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c606t-5eb3e1d31c760865780fe06319f48dff87caf221509d4de4bf1adfc857ccb1e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>140/133</topic><topic>140/146</topic><topic>147/135</topic><topic>147/143</topic><topic>639/301</topic><topic>639/4077</topic><topic>639/925</topic><topic>Charging</topic><topic>Electrochemistry</topic><topic>Electrolytic cells</topic><topic>Energy</topic><topic>Energy conversion</topic><topic>Energy conversion efficiency</topic><topic>Energy harvesting</topic><topic>Energy storage</topic><topic>Fabrication</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Multidisciplinary Sciences</topic><topic>Piezoelectricity</topic><topic>Science</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Science (multidisciplinary)</topic><topic>Separators</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Supercapacitors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krishnamoorthy, Karthikeyan</creatorcontrib><creatorcontrib>Pazhamalai, Parthiban</creatorcontrib><creatorcontrib>Mariappan, Vimal Kumar</creatorcontrib><creatorcontrib>Nardekar, Swapnil Shital</creatorcontrib><creatorcontrib>Sahoo, Surjit</creatorcontrib><creatorcontrib>Kim, Sang-Jae</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krishnamoorthy, Karthikeyan</au><au>Pazhamalai, Parthiban</au><au>Mariappan, Vimal Kumar</au><au>Nardekar, Swapnil Shital</au><au>Sahoo, Surjit</au><au>Kim, Sang-Jae</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probing the energy conversion process in piezoelectric-driven electrochemical self-charging supercapacitor power cell using piezoelectrochemical spectroscopy</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><stitle>NAT COMMUN</stitle><addtitle>Nat Commun</addtitle><date>2020-05-11</date><risdate>2020</risdate><volume>11</volume><issue>1</issue><spage>2351</spage><epage>2351</epage><pages>2351-2351</pages><artnum>2351</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The design and development of self-charging supercapacitor power cells are rapidly gaining interest due to their ability to convert and store energy in an integrated device. Here, we have demonstrated the fabrication of a self-charging supercapacitor using siloxene sheets as electrodes and siloxene-based polymeric piezofiber separator immobilized with an ionogel electrolyte. The self-charging properties of the fabricated device subjected to various levels of compressive forces showed their ability to self-charge up to a maximum of 207 mV. The mechanism of self-charging process in the fabricated device is discussed via “piezoelectrochemical effect” with the aid of piezoelectrochemical spectroscopy measurements. These studies revealed the direct evidence of the piezoelectrochemical phenomenon involved in the energy conversion and storage process in the fabricated device. This study can provide insight towards understanding the energy conversion process in self-charging supercapacitors, which is of significance considering the state of the art of piezoelectric driven self-charging supercapacitors. Devices that are capable of energy harvesting and storage are attractive for meeting daily energy demands, however they are limited by efficiency. Here the authors fabricate a siloxene-based self-charging supercapacitor power cell and probe the piezoelectrochemical effect involved in the charging process.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32393749</pmid><doi>10.1038/s41467-020-15808-6</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6400-8413</orcidid><orcidid>https://orcid.org/0000-0002-5378-1790</orcidid><orcidid>https://orcid.org/0000-0002-8519-3010</orcidid><orcidid>https://orcid.org/0000-0002-7150-7920</orcidid><orcidid>https://orcid.org/0000-0003-0460-5763</orcidid><orcidid>https://orcid.org/0000-0002-5066-2622</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2020-05, Vol.11 (1), p.2351-2351, Article 2351
issn 2041-1723
2041-1723
language eng
recordid cdi_proquest_journals_2401047832
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Nature Free; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central; Alma/SFX Local Collection; Springer Nature OA/Free Journals
subjects 140/133
140/146
147/135
147/143
639/301
639/4077
639/925
Charging
Electrochemistry
Electrolytic cells
Energy
Energy conversion
Energy conversion efficiency
Energy harvesting
Energy storage
Fabrication
Humanities and Social Sciences
multidisciplinary
Multidisciplinary Sciences
Piezoelectricity
Science
Science & Technology
Science & Technology - Other Topics
Science (multidisciplinary)
Separators
Spectroscopy
Spectrum analysis
Supercapacitors
title Probing the energy conversion process in piezoelectric-driven electrochemical self-charging supercapacitor power cell using piezoelectrochemical spectroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T22%3A50%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probing%20the%20energy%20conversion%20process%20in%20piezoelectric-driven%20electrochemical%20self-charging%20supercapacitor%20power%20cell%20using%20piezoelectrochemical%20spectroscopy&rft.jtitle=Nature%20communications&rft.au=Krishnamoorthy,%20Karthikeyan&rft.date=2020-05-11&rft.volume=11&rft.issue=1&rft.spage=2351&rft.epage=2351&rft.pages=2351-2351&rft.artnum=2351&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-020-15808-6&rft_dat=%3Cproquest_webof%3E2401047832%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2401047832&rft_id=info:pmid/32393749&rft_doaj_id=oai_doaj_org_article_118c99fb86a54b9791fef41bd1cc48c1&rfr_iscdi=true