Biotransformation of Tris(2-chloroethyl) Phosphate (TCEP) in Sediment Microcosms and the Adaptation of Microbial Communities to TCEP

Tris­(2-chloroethyl) phosphate (TCEP), a typical chlorinated organophosphate ester (OPE), is an emerging contaminant of global concern because of its frequent occurrence, potential toxic effects, and persistence in the environment. In this study, we investigated the microbial TCEP biotransformation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2020-05, Vol.54 (9), p.5489-5497
Hauptverfasser: Zhou, Xiangyu, Liang, Yi, Ren, Guofa, Zheng, Kewen, Wu, Yang, Zeng, Xiangying, Zhong, Yin, Yu, Zhiqiang, Peng, Ping’an
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5497
container_issue 9
container_start_page 5489
container_title Environmental science & technology
container_volume 54
creator Zhou, Xiangyu
Liang, Yi
Ren, Guofa
Zheng, Kewen
Wu, Yang
Zeng, Xiangying
Zhong, Yin
Yu, Zhiqiang
Peng, Ping’an
description Tris­(2-chloroethyl) phosphate (TCEP), a typical chlorinated organophosphate ester (OPE), is an emerging contaminant of global concern because of its frequent occurrence, potential toxic effects, and persistence in the environment. In this study, we investigated the microbial TCEP biotransformation and the development of microbial communities in sediment microcosms with repeated TCEP amendments. The TCEP degradation fitted pseudo-zero-order kinetics, with reaction rates of 0.068 mg/(L h) after the first spike of 5 mg/L and 1.85 mg/(L h) after the second spike of 50 mg/L. TCEP was mainly degraded via phosphoester bond hydrolysis, evidenced by the production of bis­(2-chloroethyl) phosphate (BCEP) and mono-chloroethyl phosphate (MCEP). Bis­(2-chloroethyl) 2-hydroxyethyl phosphate (TCEP-OH), phosphoric bis­(2-chloroethyl) (2-oxoethyl) ester (TCEP-CHO), phosphoric acid bis­(2-chloroethyl)­(carboxymethyl) ester (TCEP-COOH), and 2-chloroethyl 2-hydroxyethyl hydrogen phosphate (BCEP-OH) were also identified as microbial TCEP transformation products, indicating that TCEP degradation may follow hydrolytic dechlorination and oxidation pathways. Microbial community compositions in TCEP-amended microcosms shifted away from control microcosms after the second TCEP spike. Burkholderiales and Rhizobiales were two prevalent bacterial guilds enriched in TCEP-amended microcosms and were linked to the higher abundances of alkaline and acid phosphatase genes and genes involved in the metabolism of 2-chloroethanol, a side product of TCEP hydrolysis, indicating their importance in degrading TCEP and its metabolites.
doi_str_mv 10.1021/acs.est.9b07042
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2400573455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2400573455</sourcerecordid><originalsourceid>FETCH-LOGICAL-a361t-3a8bd220b94f1a0fe60e629ed68289c00adb71c02860fa1dfef582caa5c91c0d3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMotlbP3iTgpUW2nWS_j7XUD6hYsIK3JbtJ2MjuZk3SQ-_-cHdt7c3TwPC8zwwvQtcEpgQombHCToV10zSHGAJ6goYkpOCFSUhO0RCA-F7qRx8DdGHtJwBQH5JzNPApjYIoJkP0fa-0M6yxUpuaOaUbrCXeGGXH1CvKShstXLmrJnhdatuWzAk83iyW6wlWDX4TXNWicfhFFUYX2tYWs4ZjVwo856x1R-MvkCtW4YWu622jnBIWO4171yU6k6yy4uowR-j9YblZPHmr18fnxXzlMT8izvNZknNKIU8DSRhIEYGIaCp4lNAkLQAYz2NSAE0ikIxwKWSY0IKxsEi7NfdH6HbvbY3-2na9ZZ96a5ruZEYDgDD2gzDsqNme6j621giZtUbVzOwyAlnfeta1nvXpQ-td4ubg3ea14Ef-r-YOuNsDffJ48z_dD6LUjkY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2400573455</pqid></control><display><type>article</type><title>Biotransformation of Tris(2-chloroethyl) Phosphate (TCEP) in Sediment Microcosms and the Adaptation of Microbial Communities to TCEP</title><source>ACS Publications</source><creator>Zhou, Xiangyu ; Liang, Yi ; Ren, Guofa ; Zheng, Kewen ; Wu, Yang ; Zeng, Xiangying ; Zhong, Yin ; Yu, Zhiqiang ; Peng, Ping’an</creator><creatorcontrib>Zhou, Xiangyu ; Liang, Yi ; Ren, Guofa ; Zheng, Kewen ; Wu, Yang ; Zeng, Xiangying ; Zhong, Yin ; Yu, Zhiqiang ; Peng, Ping’an</creatorcontrib><description>Tris­(2-chloroethyl) phosphate (TCEP), a typical chlorinated organophosphate ester (OPE), is an emerging contaminant of global concern because of its frequent occurrence, potential toxic effects, and persistence in the environment. In this study, we investigated the microbial TCEP biotransformation and the development of microbial communities in sediment microcosms with repeated TCEP amendments. The TCEP degradation fitted pseudo-zero-order kinetics, with reaction rates of 0.068 mg/(L h) after the first spike of 5 mg/L and 1.85 mg/(L h) after the second spike of 50 mg/L. TCEP was mainly degraded via phosphoester bond hydrolysis, evidenced by the production of bis­(2-chloroethyl) phosphate (BCEP) and mono-chloroethyl phosphate (MCEP). Bis­(2-chloroethyl) 2-hydroxyethyl phosphate (TCEP-OH), phosphoric bis­(2-chloroethyl) (2-oxoethyl) ester (TCEP-CHO), phosphoric acid bis­(2-chloroethyl)­(carboxymethyl) ester (TCEP-COOH), and 2-chloroethyl 2-hydroxyethyl hydrogen phosphate (BCEP-OH) were also identified as microbial TCEP transformation products, indicating that TCEP degradation may follow hydrolytic dechlorination and oxidation pathways. Microbial community compositions in TCEP-amended microcosms shifted away from control microcosms after the second TCEP spike. Burkholderiales and Rhizobiales were two prevalent bacterial guilds enriched in TCEP-amended microcosms and were linked to the higher abundances of alkaline and acid phosphatase genes and genes involved in the metabolism of 2-chloroethanol, a side product of TCEP hydrolysis, indicating their importance in degrading TCEP and its metabolites.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.9b07042</identifier><identifier>PMID: 32264671</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Acid phosphatase ; Biodegradation ; Biotransformation ; Contaminants ; Dechlorination ; Degradation ; Environmental effects ; Genes ; Guilds ; Hydrolysis ; Metabolism ; Metabolites ; Microbial activity ; Microbiomes ; Microcosms ; Microorganisms ; Organophosphates ; Oxidation ; Phosphate ; Phosphates ; Phosphoric acid ; Reaction kinetics ; Spikes ; Toxicity</subject><ispartof>Environmental science &amp; technology, 2020-05, Vol.54 (9), p.5489-5497</ispartof><rights>Copyright American Chemical Society May 5, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a361t-3a8bd220b94f1a0fe60e629ed68289c00adb71c02860fa1dfef582caa5c91c0d3</citedby><cites>FETCH-LOGICAL-a361t-3a8bd220b94f1a0fe60e629ed68289c00adb71c02860fa1dfef582caa5c91c0d3</cites><orcidid>0000-0002-8631-2704</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.9b07042$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.9b07042$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32264671$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Xiangyu</creatorcontrib><creatorcontrib>Liang, Yi</creatorcontrib><creatorcontrib>Ren, Guofa</creatorcontrib><creatorcontrib>Zheng, Kewen</creatorcontrib><creatorcontrib>Wu, Yang</creatorcontrib><creatorcontrib>Zeng, Xiangying</creatorcontrib><creatorcontrib>Zhong, Yin</creatorcontrib><creatorcontrib>Yu, Zhiqiang</creatorcontrib><creatorcontrib>Peng, Ping’an</creatorcontrib><title>Biotransformation of Tris(2-chloroethyl) Phosphate (TCEP) in Sediment Microcosms and the Adaptation of Microbial Communities to TCEP</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Tris­(2-chloroethyl) phosphate (TCEP), a typical chlorinated organophosphate ester (OPE), is an emerging contaminant of global concern because of its frequent occurrence, potential toxic effects, and persistence in the environment. In this study, we investigated the microbial TCEP biotransformation and the development of microbial communities in sediment microcosms with repeated TCEP amendments. The TCEP degradation fitted pseudo-zero-order kinetics, with reaction rates of 0.068 mg/(L h) after the first spike of 5 mg/L and 1.85 mg/(L h) after the second spike of 50 mg/L. TCEP was mainly degraded via phosphoester bond hydrolysis, evidenced by the production of bis­(2-chloroethyl) phosphate (BCEP) and mono-chloroethyl phosphate (MCEP). Bis­(2-chloroethyl) 2-hydroxyethyl phosphate (TCEP-OH), phosphoric bis­(2-chloroethyl) (2-oxoethyl) ester (TCEP-CHO), phosphoric acid bis­(2-chloroethyl)­(carboxymethyl) ester (TCEP-COOH), and 2-chloroethyl 2-hydroxyethyl hydrogen phosphate (BCEP-OH) were also identified as microbial TCEP transformation products, indicating that TCEP degradation may follow hydrolytic dechlorination and oxidation pathways. Microbial community compositions in TCEP-amended microcosms shifted away from control microcosms after the second TCEP spike. Burkholderiales and Rhizobiales were two prevalent bacterial guilds enriched in TCEP-amended microcosms and were linked to the higher abundances of alkaline and acid phosphatase genes and genes involved in the metabolism of 2-chloroethanol, a side product of TCEP hydrolysis, indicating their importance in degrading TCEP and its metabolites.</description><subject>Acid phosphatase</subject><subject>Biodegradation</subject><subject>Biotransformation</subject><subject>Contaminants</subject><subject>Dechlorination</subject><subject>Degradation</subject><subject>Environmental effects</subject><subject>Genes</subject><subject>Guilds</subject><subject>Hydrolysis</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Microbial activity</subject><subject>Microbiomes</subject><subject>Microcosms</subject><subject>Microorganisms</subject><subject>Organophosphates</subject><subject>Oxidation</subject><subject>Phosphate</subject><subject>Phosphates</subject><subject>Phosphoric acid</subject><subject>Reaction kinetics</subject><subject>Spikes</subject><subject>Toxicity</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMotlbP3iTgpUW2nWS_j7XUD6hYsIK3JbtJ2MjuZk3SQ-_-cHdt7c3TwPC8zwwvQtcEpgQombHCToV10zSHGAJ6goYkpOCFSUhO0RCA-F7qRx8DdGHtJwBQH5JzNPApjYIoJkP0fa-0M6yxUpuaOaUbrCXeGGXH1CvKShstXLmrJnhdatuWzAk83iyW6wlWDX4TXNWicfhFFUYX2tYWs4ZjVwo856x1R-MvkCtW4YWu622jnBIWO4171yU6k6yy4uowR-j9YblZPHmr18fnxXzlMT8izvNZknNKIU8DSRhIEYGIaCp4lNAkLQAYz2NSAE0ikIxwKWSY0IKxsEi7NfdH6HbvbY3-2na9ZZ96a5ruZEYDgDD2gzDsqNme6j621giZtUbVzOwyAlnfeta1nvXpQ-td4ubg3ea14Ef-r-YOuNsDffJ48z_dD6LUjkY</recordid><startdate>20200505</startdate><enddate>20200505</enddate><creator>Zhou, Xiangyu</creator><creator>Liang, Yi</creator><creator>Ren, Guofa</creator><creator>Zheng, Kewen</creator><creator>Wu, Yang</creator><creator>Zeng, Xiangying</creator><creator>Zhong, Yin</creator><creator>Yu, Zhiqiang</creator><creator>Peng, Ping’an</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-8631-2704</orcidid></search><sort><creationdate>20200505</creationdate><title>Biotransformation of Tris(2-chloroethyl) Phosphate (TCEP) in Sediment Microcosms and the Adaptation of Microbial Communities to TCEP</title><author>Zhou, Xiangyu ; Liang, Yi ; Ren, Guofa ; Zheng, Kewen ; Wu, Yang ; Zeng, Xiangying ; Zhong, Yin ; Yu, Zhiqiang ; Peng, Ping’an</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a361t-3a8bd220b94f1a0fe60e629ed68289c00adb71c02860fa1dfef582caa5c91c0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acid phosphatase</topic><topic>Biodegradation</topic><topic>Biotransformation</topic><topic>Contaminants</topic><topic>Dechlorination</topic><topic>Degradation</topic><topic>Environmental effects</topic><topic>Genes</topic><topic>Guilds</topic><topic>Hydrolysis</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Microbial activity</topic><topic>Microbiomes</topic><topic>Microcosms</topic><topic>Microorganisms</topic><topic>Organophosphates</topic><topic>Oxidation</topic><topic>Phosphate</topic><topic>Phosphates</topic><topic>Phosphoric acid</topic><topic>Reaction kinetics</topic><topic>Spikes</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Xiangyu</creatorcontrib><creatorcontrib>Liang, Yi</creatorcontrib><creatorcontrib>Ren, Guofa</creatorcontrib><creatorcontrib>Zheng, Kewen</creatorcontrib><creatorcontrib>Wu, Yang</creatorcontrib><creatorcontrib>Zeng, Xiangying</creatorcontrib><creatorcontrib>Zhong, Yin</creatorcontrib><creatorcontrib>Yu, Zhiqiang</creatorcontrib><creatorcontrib>Peng, Ping’an</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Xiangyu</au><au>Liang, Yi</au><au>Ren, Guofa</au><au>Zheng, Kewen</au><au>Wu, Yang</au><au>Zeng, Xiangying</au><au>Zhong, Yin</au><au>Yu, Zhiqiang</au><au>Peng, Ping’an</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biotransformation of Tris(2-chloroethyl) Phosphate (TCEP) in Sediment Microcosms and the Adaptation of Microbial Communities to TCEP</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2020-05-05</date><risdate>2020</risdate><volume>54</volume><issue>9</issue><spage>5489</spage><epage>5497</epage><pages>5489-5497</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>Tris­(2-chloroethyl) phosphate (TCEP), a typical chlorinated organophosphate ester (OPE), is an emerging contaminant of global concern because of its frequent occurrence, potential toxic effects, and persistence in the environment. In this study, we investigated the microbial TCEP biotransformation and the development of microbial communities in sediment microcosms with repeated TCEP amendments. The TCEP degradation fitted pseudo-zero-order kinetics, with reaction rates of 0.068 mg/(L h) after the first spike of 5 mg/L and 1.85 mg/(L h) after the second spike of 50 mg/L. TCEP was mainly degraded via phosphoester bond hydrolysis, evidenced by the production of bis­(2-chloroethyl) phosphate (BCEP) and mono-chloroethyl phosphate (MCEP). Bis­(2-chloroethyl) 2-hydroxyethyl phosphate (TCEP-OH), phosphoric bis­(2-chloroethyl) (2-oxoethyl) ester (TCEP-CHO), phosphoric acid bis­(2-chloroethyl)­(carboxymethyl) ester (TCEP-COOH), and 2-chloroethyl 2-hydroxyethyl hydrogen phosphate (BCEP-OH) were also identified as microbial TCEP transformation products, indicating that TCEP degradation may follow hydrolytic dechlorination and oxidation pathways. Microbial community compositions in TCEP-amended microcosms shifted away from control microcosms after the second TCEP spike. Burkholderiales and Rhizobiales were two prevalent bacterial guilds enriched in TCEP-amended microcosms and were linked to the higher abundances of alkaline and acid phosphatase genes and genes involved in the metabolism of 2-chloroethanol, a side product of TCEP hydrolysis, indicating their importance in degrading TCEP and its metabolites.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32264671</pmid><doi>10.1021/acs.est.9b07042</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8631-2704</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2020-05, Vol.54 (9), p.5489-5497
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_journals_2400573455
source ACS Publications
subjects Acid phosphatase
Biodegradation
Biotransformation
Contaminants
Dechlorination
Degradation
Environmental effects
Genes
Guilds
Hydrolysis
Metabolism
Metabolites
Microbial activity
Microbiomes
Microcosms
Microorganisms
Organophosphates
Oxidation
Phosphate
Phosphates
Phosphoric acid
Reaction kinetics
Spikes
Toxicity
title Biotransformation of Tris(2-chloroethyl) Phosphate (TCEP) in Sediment Microcosms and the Adaptation of Microbial Communities to TCEP
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T04%3A31%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biotransformation%20of%20Tris(2-chloroethyl)%20Phosphate%20(TCEP)%20in%20Sediment%20Microcosms%20and%20the%20Adaptation%20of%20Microbial%20Communities%20to%20TCEP&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Zhou,%20Xiangyu&rft.date=2020-05-05&rft.volume=54&rft.issue=9&rft.spage=5489&rft.epage=5497&rft.pages=5489-5497&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.9b07042&rft_dat=%3Cproquest_cross%3E2400573455%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2400573455&rft_id=info:pmid/32264671&rfr_iscdi=true