Biotransformation of Tris(2-chloroethyl) Phosphate (TCEP) in Sediment Microcosms and the Adaptation of Microbial Communities to TCEP
Tris(2-chloroethyl) phosphate (TCEP), a typical chlorinated organophosphate ester (OPE), is an emerging contaminant of global concern because of its frequent occurrence, potential toxic effects, and persistence in the environment. In this study, we investigated the microbial TCEP biotransformation...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2020-05, Vol.54 (9), p.5489-5497 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5497 |
---|---|
container_issue | 9 |
container_start_page | 5489 |
container_title | Environmental science & technology |
container_volume | 54 |
creator | Zhou, Xiangyu Liang, Yi Ren, Guofa Zheng, Kewen Wu, Yang Zeng, Xiangying Zhong, Yin Yu, Zhiqiang Peng, Ping’an |
description | Tris(2-chloroethyl) phosphate (TCEP), a typical chlorinated organophosphate ester (OPE), is an emerging contaminant of global concern because of its frequent occurrence, potential toxic effects, and persistence in the environment. In this study, we investigated the microbial TCEP biotransformation and the development of microbial communities in sediment microcosms with repeated TCEP amendments. The TCEP degradation fitted pseudo-zero-order kinetics, with reaction rates of 0.068 mg/(L h) after the first spike of 5 mg/L and 1.85 mg/(L h) after the second spike of 50 mg/L. TCEP was mainly degraded via phosphoester bond hydrolysis, evidenced by the production of bis(2-chloroethyl) phosphate (BCEP) and mono-chloroethyl phosphate (MCEP). Bis(2-chloroethyl) 2-hydroxyethyl phosphate (TCEP-OH), phosphoric bis(2-chloroethyl) (2-oxoethyl) ester (TCEP-CHO), phosphoric acid bis(2-chloroethyl)(carboxymethyl) ester (TCEP-COOH), and 2-chloroethyl 2-hydroxyethyl hydrogen phosphate (BCEP-OH) were also identified as microbial TCEP transformation products, indicating that TCEP degradation may follow hydrolytic dechlorination and oxidation pathways. Microbial community compositions in TCEP-amended microcosms shifted away from control microcosms after the second TCEP spike. Burkholderiales and Rhizobiales were two prevalent bacterial guilds enriched in TCEP-amended microcosms and were linked to the higher abundances of alkaline and acid phosphatase genes and genes involved in the metabolism of 2-chloroethanol, a side product of TCEP hydrolysis, indicating their importance in degrading TCEP and its metabolites. |
doi_str_mv | 10.1021/acs.est.9b07042 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2400573455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2400573455</sourcerecordid><originalsourceid>FETCH-LOGICAL-a361t-3a8bd220b94f1a0fe60e629ed68289c00adb71c02860fa1dfef582caa5c91c0d3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMotlbP3iTgpUW2nWS_j7XUD6hYsIK3JbtJ2MjuZk3SQ-_-cHdt7c3TwPC8zwwvQtcEpgQombHCToV10zSHGAJ6goYkpOCFSUhO0RCA-F7qRx8DdGHtJwBQH5JzNPApjYIoJkP0fa-0M6yxUpuaOaUbrCXeGGXH1CvKShstXLmrJnhdatuWzAk83iyW6wlWDX4TXNWicfhFFUYX2tYWs4ZjVwo856x1R-MvkCtW4YWu622jnBIWO4171yU6k6yy4uowR-j9YblZPHmr18fnxXzlMT8izvNZknNKIU8DSRhIEYGIaCp4lNAkLQAYz2NSAE0ikIxwKWSY0IKxsEi7NfdH6HbvbY3-2na9ZZ96a5ruZEYDgDD2gzDsqNme6j621giZtUbVzOwyAlnfeta1nvXpQ-td4ubg3ea14Ef-r-YOuNsDffJ48z_dD6LUjkY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2400573455</pqid></control><display><type>article</type><title>Biotransformation of Tris(2-chloroethyl) Phosphate (TCEP) in Sediment Microcosms and the Adaptation of Microbial Communities to TCEP</title><source>ACS Publications</source><creator>Zhou, Xiangyu ; Liang, Yi ; Ren, Guofa ; Zheng, Kewen ; Wu, Yang ; Zeng, Xiangying ; Zhong, Yin ; Yu, Zhiqiang ; Peng, Ping’an</creator><creatorcontrib>Zhou, Xiangyu ; Liang, Yi ; Ren, Guofa ; Zheng, Kewen ; Wu, Yang ; Zeng, Xiangying ; Zhong, Yin ; Yu, Zhiqiang ; Peng, Ping’an</creatorcontrib><description>Tris(2-chloroethyl) phosphate (TCEP), a typical chlorinated organophosphate ester (OPE), is an emerging contaminant of global concern because of its frequent occurrence, potential toxic effects, and persistence in the environment. In this study, we investigated the microbial TCEP biotransformation and the development of microbial communities in sediment microcosms with repeated TCEP amendments. The TCEP degradation fitted pseudo-zero-order kinetics, with reaction rates of 0.068 mg/(L h) after the first spike of 5 mg/L and 1.85 mg/(L h) after the second spike of 50 mg/L. TCEP was mainly degraded via phosphoester bond hydrolysis, evidenced by the production of bis(2-chloroethyl) phosphate (BCEP) and mono-chloroethyl phosphate (MCEP). Bis(2-chloroethyl) 2-hydroxyethyl phosphate (TCEP-OH), phosphoric bis(2-chloroethyl) (2-oxoethyl) ester (TCEP-CHO), phosphoric acid bis(2-chloroethyl)(carboxymethyl) ester (TCEP-COOH), and 2-chloroethyl 2-hydroxyethyl hydrogen phosphate (BCEP-OH) were also identified as microbial TCEP transformation products, indicating that TCEP degradation may follow hydrolytic dechlorination and oxidation pathways. Microbial community compositions in TCEP-amended microcosms shifted away from control microcosms after the second TCEP spike. Burkholderiales and Rhizobiales were two prevalent bacterial guilds enriched in TCEP-amended microcosms and were linked to the higher abundances of alkaline and acid phosphatase genes and genes involved in the metabolism of 2-chloroethanol, a side product of TCEP hydrolysis, indicating their importance in degrading TCEP and its metabolites.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.9b07042</identifier><identifier>PMID: 32264671</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Acid phosphatase ; Biodegradation ; Biotransformation ; Contaminants ; Dechlorination ; Degradation ; Environmental effects ; Genes ; Guilds ; Hydrolysis ; Metabolism ; Metabolites ; Microbial activity ; Microbiomes ; Microcosms ; Microorganisms ; Organophosphates ; Oxidation ; Phosphate ; Phosphates ; Phosphoric acid ; Reaction kinetics ; Spikes ; Toxicity</subject><ispartof>Environmental science & technology, 2020-05, Vol.54 (9), p.5489-5497</ispartof><rights>Copyright American Chemical Society May 5, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a361t-3a8bd220b94f1a0fe60e629ed68289c00adb71c02860fa1dfef582caa5c91c0d3</citedby><cites>FETCH-LOGICAL-a361t-3a8bd220b94f1a0fe60e629ed68289c00adb71c02860fa1dfef582caa5c91c0d3</cites><orcidid>0000-0002-8631-2704</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.9b07042$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.9b07042$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32264671$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Xiangyu</creatorcontrib><creatorcontrib>Liang, Yi</creatorcontrib><creatorcontrib>Ren, Guofa</creatorcontrib><creatorcontrib>Zheng, Kewen</creatorcontrib><creatorcontrib>Wu, Yang</creatorcontrib><creatorcontrib>Zeng, Xiangying</creatorcontrib><creatorcontrib>Zhong, Yin</creatorcontrib><creatorcontrib>Yu, Zhiqiang</creatorcontrib><creatorcontrib>Peng, Ping’an</creatorcontrib><title>Biotransformation of Tris(2-chloroethyl) Phosphate (TCEP) in Sediment Microcosms and the Adaptation of Microbial Communities to TCEP</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Tris(2-chloroethyl) phosphate (TCEP), a typical chlorinated organophosphate ester (OPE), is an emerging contaminant of global concern because of its frequent occurrence, potential toxic effects, and persistence in the environment. In this study, we investigated the microbial TCEP biotransformation and the development of microbial communities in sediment microcosms with repeated TCEP amendments. The TCEP degradation fitted pseudo-zero-order kinetics, with reaction rates of 0.068 mg/(L h) after the first spike of 5 mg/L and 1.85 mg/(L h) after the second spike of 50 mg/L. TCEP was mainly degraded via phosphoester bond hydrolysis, evidenced by the production of bis(2-chloroethyl) phosphate (BCEP) and mono-chloroethyl phosphate (MCEP). Bis(2-chloroethyl) 2-hydroxyethyl phosphate (TCEP-OH), phosphoric bis(2-chloroethyl) (2-oxoethyl) ester (TCEP-CHO), phosphoric acid bis(2-chloroethyl)(carboxymethyl) ester (TCEP-COOH), and 2-chloroethyl 2-hydroxyethyl hydrogen phosphate (BCEP-OH) were also identified as microbial TCEP transformation products, indicating that TCEP degradation may follow hydrolytic dechlorination and oxidation pathways. Microbial community compositions in TCEP-amended microcosms shifted away from control microcosms after the second TCEP spike. Burkholderiales and Rhizobiales were two prevalent bacterial guilds enriched in TCEP-amended microcosms and were linked to the higher abundances of alkaline and acid phosphatase genes and genes involved in the metabolism of 2-chloroethanol, a side product of TCEP hydrolysis, indicating their importance in degrading TCEP and its metabolites.</description><subject>Acid phosphatase</subject><subject>Biodegradation</subject><subject>Biotransformation</subject><subject>Contaminants</subject><subject>Dechlorination</subject><subject>Degradation</subject><subject>Environmental effects</subject><subject>Genes</subject><subject>Guilds</subject><subject>Hydrolysis</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Microbial activity</subject><subject>Microbiomes</subject><subject>Microcosms</subject><subject>Microorganisms</subject><subject>Organophosphates</subject><subject>Oxidation</subject><subject>Phosphate</subject><subject>Phosphates</subject><subject>Phosphoric acid</subject><subject>Reaction kinetics</subject><subject>Spikes</subject><subject>Toxicity</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMotlbP3iTgpUW2nWS_j7XUD6hYsIK3JbtJ2MjuZk3SQ-_-cHdt7c3TwPC8zwwvQtcEpgQombHCToV10zSHGAJ6goYkpOCFSUhO0RCA-F7qRx8DdGHtJwBQH5JzNPApjYIoJkP0fa-0M6yxUpuaOaUbrCXeGGXH1CvKShstXLmrJnhdatuWzAk83iyW6wlWDX4TXNWicfhFFUYX2tYWs4ZjVwo856x1R-MvkCtW4YWu622jnBIWO4171yU6k6yy4uowR-j9YblZPHmr18fnxXzlMT8izvNZknNKIU8DSRhIEYGIaCp4lNAkLQAYz2NSAE0ikIxwKWSY0IKxsEi7NfdH6HbvbY3-2na9ZZ96a5ruZEYDgDD2gzDsqNme6j621giZtUbVzOwyAlnfeta1nvXpQ-td4ubg3ea14Ef-r-YOuNsDffJ48z_dD6LUjkY</recordid><startdate>20200505</startdate><enddate>20200505</enddate><creator>Zhou, Xiangyu</creator><creator>Liang, Yi</creator><creator>Ren, Guofa</creator><creator>Zheng, Kewen</creator><creator>Wu, Yang</creator><creator>Zeng, Xiangying</creator><creator>Zhong, Yin</creator><creator>Yu, Zhiqiang</creator><creator>Peng, Ping’an</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-8631-2704</orcidid></search><sort><creationdate>20200505</creationdate><title>Biotransformation of Tris(2-chloroethyl) Phosphate (TCEP) in Sediment Microcosms and the Adaptation of Microbial Communities to TCEP</title><author>Zhou, Xiangyu ; Liang, Yi ; Ren, Guofa ; Zheng, Kewen ; Wu, Yang ; Zeng, Xiangying ; Zhong, Yin ; Yu, Zhiqiang ; Peng, Ping’an</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a361t-3a8bd220b94f1a0fe60e629ed68289c00adb71c02860fa1dfef582caa5c91c0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acid phosphatase</topic><topic>Biodegradation</topic><topic>Biotransformation</topic><topic>Contaminants</topic><topic>Dechlorination</topic><topic>Degradation</topic><topic>Environmental effects</topic><topic>Genes</topic><topic>Guilds</topic><topic>Hydrolysis</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Microbial activity</topic><topic>Microbiomes</topic><topic>Microcosms</topic><topic>Microorganisms</topic><topic>Organophosphates</topic><topic>Oxidation</topic><topic>Phosphate</topic><topic>Phosphates</topic><topic>Phosphoric acid</topic><topic>Reaction kinetics</topic><topic>Spikes</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Xiangyu</creatorcontrib><creatorcontrib>Liang, Yi</creatorcontrib><creatorcontrib>Ren, Guofa</creatorcontrib><creatorcontrib>Zheng, Kewen</creatorcontrib><creatorcontrib>Wu, Yang</creatorcontrib><creatorcontrib>Zeng, Xiangying</creatorcontrib><creatorcontrib>Zhong, Yin</creatorcontrib><creatorcontrib>Yu, Zhiqiang</creatorcontrib><creatorcontrib>Peng, Ping’an</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Xiangyu</au><au>Liang, Yi</au><au>Ren, Guofa</au><au>Zheng, Kewen</au><au>Wu, Yang</au><au>Zeng, Xiangying</au><au>Zhong, Yin</au><au>Yu, Zhiqiang</au><au>Peng, Ping’an</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biotransformation of Tris(2-chloroethyl) Phosphate (TCEP) in Sediment Microcosms and the Adaptation of Microbial Communities to TCEP</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2020-05-05</date><risdate>2020</risdate><volume>54</volume><issue>9</issue><spage>5489</spage><epage>5497</epage><pages>5489-5497</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>Tris(2-chloroethyl) phosphate (TCEP), a typical chlorinated organophosphate ester (OPE), is an emerging contaminant of global concern because of its frequent occurrence, potential toxic effects, and persistence in the environment. In this study, we investigated the microbial TCEP biotransformation and the development of microbial communities in sediment microcosms with repeated TCEP amendments. The TCEP degradation fitted pseudo-zero-order kinetics, with reaction rates of 0.068 mg/(L h) after the first spike of 5 mg/L and 1.85 mg/(L h) after the second spike of 50 mg/L. TCEP was mainly degraded via phosphoester bond hydrolysis, evidenced by the production of bis(2-chloroethyl) phosphate (BCEP) and mono-chloroethyl phosphate (MCEP). Bis(2-chloroethyl) 2-hydroxyethyl phosphate (TCEP-OH), phosphoric bis(2-chloroethyl) (2-oxoethyl) ester (TCEP-CHO), phosphoric acid bis(2-chloroethyl)(carboxymethyl) ester (TCEP-COOH), and 2-chloroethyl 2-hydroxyethyl hydrogen phosphate (BCEP-OH) were also identified as microbial TCEP transformation products, indicating that TCEP degradation may follow hydrolytic dechlorination and oxidation pathways. Microbial community compositions in TCEP-amended microcosms shifted away from control microcosms after the second TCEP spike. Burkholderiales and Rhizobiales were two prevalent bacterial guilds enriched in TCEP-amended microcosms and were linked to the higher abundances of alkaline and acid phosphatase genes and genes involved in the metabolism of 2-chloroethanol, a side product of TCEP hydrolysis, indicating their importance in degrading TCEP and its metabolites.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32264671</pmid><doi>10.1021/acs.est.9b07042</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8631-2704</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2020-05, Vol.54 (9), p.5489-5497 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_proquest_journals_2400573455 |
source | ACS Publications |
subjects | Acid phosphatase Biodegradation Biotransformation Contaminants Dechlorination Degradation Environmental effects Genes Guilds Hydrolysis Metabolism Metabolites Microbial activity Microbiomes Microcosms Microorganisms Organophosphates Oxidation Phosphate Phosphates Phosphoric acid Reaction kinetics Spikes Toxicity |
title | Biotransformation of Tris(2-chloroethyl) Phosphate (TCEP) in Sediment Microcosms and the Adaptation of Microbial Communities to TCEP |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T04%3A31%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biotransformation%20of%20Tris(2-chloroethyl)%20Phosphate%20(TCEP)%20in%20Sediment%20Microcosms%20and%20the%20Adaptation%20of%20Microbial%20Communities%20to%20TCEP&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Zhou,%20Xiangyu&rft.date=2020-05-05&rft.volume=54&rft.issue=9&rft.spage=5489&rft.epage=5497&rft.pages=5489-5497&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.9b07042&rft_dat=%3Cproquest_cross%3E2400573455%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2400573455&rft_id=info:pmid/32264671&rfr_iscdi=true |