First Effort at Constructing a High-Density Photosynthetically Active Radiation Dataset during 1961–2014 in China

Photosynthetically active radiation (PAR) is a key factor for vegetation growth and climate change. Different types of PAR models, including four physically based models and eight artificial intelligence (AI) models, were proposed for predicting daily PAR. Multiyear daily meteorological parameters o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of climate 2019-05, Vol.32 (10), p.2761-2780
Hauptverfasser: Qin, Wenmin, Wang, Lunche, Zhang, Ming, Niu, Zigeng, Luo, Ming, Lin, Aiwen, Hu, Bo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2780
container_issue 10
container_start_page 2761
container_title Journal of climate
container_volume 32
creator Qin, Wenmin
Wang, Lunche
Zhang, Ming
Niu, Zigeng
Luo, Ming
Lin, Aiwen
Hu, Bo
description Photosynthetically active radiation (PAR) is a key factor for vegetation growth and climate change. Different types of PAR models, including four physically based models and eight artificial intelligence (AI) models, were proposed for predicting daily PAR. Multiyear daily meteorological parameters observed at 29 Chinese Ecosystem Research Network (CERN) stations and 2474 Chinese Meteorological Administration (CMA) stations across China were used for testing, validating, and comparing the above models. The optimized back propagation (BP) neural network based on the mind evolutionary algorithm (MEA-BP) was the model with highest accuracy and strongest robustness. The correlation coefficient R, mean absolute bias error (MAE), and RMSE for MEA-BP were 0.986, 0.302 MJ m−2 day−1 and 0.393 MJ m−2 day−1, respectively. Then, a high-density PAR dataset was constructed for the first time using the MEA-BP model at 2474 CMA stations of China. A quality control process and homogenization test (using RHtestsV4) for the PAR dataset were further conducted. This high-density PAR dataset would benefit many climate and ecological studies.
doi_str_mv 10.1175/JCLI-D-18-0590.1
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2400489219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26662673</jstor_id><sourcerecordid>26662673</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-fe1398796197bcba1c12594cc6e29979763e991002af694e80523510b6763e133</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWD_uXoSA5-hMsslujrKtWikooueQrlmbUjc1SYXe_A_-Q3-Ju1Q8Dcw87zvwEHKGcIlYyqv7ejZlY4YVA6n73R4ZoeTAoCj4PhlBpQtWlVIekqOUlgDIFcCIpBsfU6aTtg0xU5tpHbqU46bJvnujlt75twUbuy75vKWPi5BD2nZ54bJv7Gq1pdc9-Onok331NvvQ0bHNNrlMXzdxaECt8OfrmwMW1He0XvjOnpCD1q6SO_2bx-TlZvJc37HZw-20vp6xRgiZWetQ6KrsC3Q5b-YWG-RSF02jHNe61KUSTmsE4LZVunAVSC4kwlwNFxTimFzsetcxfGxcymYZNrHrXxpeABSV5qh7CnZUE0NK0bVmHf27jVuDYAa1ZlBrxgYrM6g12EfOd5FlyiH-81wpxVUpxC_YlXTx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2400489219</pqid></control><display><type>article</type><title>First Effort at Constructing a High-Density Photosynthetically Active Radiation Dataset during 1961–2014 in China</title><source>Jstor Complete Legacy</source><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Qin, Wenmin ; Wang, Lunche ; Zhang, Ming ; Niu, Zigeng ; Luo, Ming ; Lin, Aiwen ; Hu, Bo</creator><creatorcontrib>Qin, Wenmin ; Wang, Lunche ; Zhang, Ming ; Niu, Zigeng ; Luo, Ming ; Lin, Aiwen ; Hu, Bo</creatorcontrib><description>Photosynthetically active radiation (PAR) is a key factor for vegetation growth and climate change. Different types of PAR models, including four physically based models and eight artificial intelligence (AI) models, were proposed for predicting daily PAR. Multiyear daily meteorological parameters observed at 29 Chinese Ecosystem Research Network (CERN) stations and 2474 Chinese Meteorological Administration (CMA) stations across China were used for testing, validating, and comparing the above models. The optimized back propagation (BP) neural network based on the mind evolutionary algorithm (MEA-BP) was the model with highest accuracy and strongest robustness. The correlation coefficient R, mean absolute bias error (MAE), and RMSE for MEA-BP were 0.986, 0.302 MJ m−2 day−1 and 0.393 MJ m−2 day−1, respectively. Then, a high-density PAR dataset was constructed for the first time using the MEA-BP model at 2474 CMA stations of China. A quality control process and homogenization test (using RHtestsV4) for the PAR dataset were further conducted. This high-density PAR dataset would benefit many climate and ecological studies.</description><identifier>ISSN: 0894-8755</identifier><identifier>EISSN: 1520-0442</identifier><identifier>DOI: 10.1175/JCLI-D-18-0590.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Accuracy ; Artificial intelligence ; Atmospheric models ; Climate and vegetation ; Climate change ; Climate models ; Correlation coefficient ; Correlation coefficients ; Datasets ; Density ; Ecological studies ; Evolutionary algorithms ; Humidity ; Meteorological parameters ; Methods ; Model accuracy ; Neural networks ; Photosynthetically active radiation ; Quality control ; Radiation ; Root-mean-square errors ; Stations ; Studies ; Vegetation growth</subject><ispartof>Journal of climate, 2019-05, Vol.32 (10), p.2761-2780</ispartof><rights>2019 American Meteorological Society</rights><rights>Copyright American Meteorological Society May 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-fe1398796197bcba1c12594cc6e29979763e991002af694e80523510b6763e133</citedby><cites>FETCH-LOGICAL-c335t-fe1398796197bcba1c12594cc6e29979763e991002af694e80523510b6763e133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26662673$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26662673$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,3668,27901,27902,57992,58225</link.rule.ids></links><search><creatorcontrib>Qin, Wenmin</creatorcontrib><creatorcontrib>Wang, Lunche</creatorcontrib><creatorcontrib>Zhang, Ming</creatorcontrib><creatorcontrib>Niu, Zigeng</creatorcontrib><creatorcontrib>Luo, Ming</creatorcontrib><creatorcontrib>Lin, Aiwen</creatorcontrib><creatorcontrib>Hu, Bo</creatorcontrib><title>First Effort at Constructing a High-Density Photosynthetically Active Radiation Dataset during 1961–2014 in China</title><title>Journal of climate</title><description>Photosynthetically active radiation (PAR) is a key factor for vegetation growth and climate change. Different types of PAR models, including four physically based models and eight artificial intelligence (AI) models, were proposed for predicting daily PAR. Multiyear daily meteorological parameters observed at 29 Chinese Ecosystem Research Network (CERN) stations and 2474 Chinese Meteorological Administration (CMA) stations across China were used for testing, validating, and comparing the above models. The optimized back propagation (BP) neural network based on the mind evolutionary algorithm (MEA-BP) was the model with highest accuracy and strongest robustness. The correlation coefficient R, mean absolute bias error (MAE), and RMSE for MEA-BP were 0.986, 0.302 MJ m−2 day−1 and 0.393 MJ m−2 day−1, respectively. Then, a high-density PAR dataset was constructed for the first time using the MEA-BP model at 2474 CMA stations of China. A quality control process and homogenization test (using RHtestsV4) for the PAR dataset were further conducted. This high-density PAR dataset would benefit many climate and ecological studies.</description><subject>Accuracy</subject><subject>Artificial intelligence</subject><subject>Atmospheric models</subject><subject>Climate and vegetation</subject><subject>Climate change</subject><subject>Climate models</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Datasets</subject><subject>Density</subject><subject>Ecological studies</subject><subject>Evolutionary algorithms</subject><subject>Humidity</subject><subject>Meteorological parameters</subject><subject>Methods</subject><subject>Model accuracy</subject><subject>Neural networks</subject><subject>Photosynthetically active radiation</subject><subject>Quality control</subject><subject>Radiation</subject><subject>Root-mean-square errors</subject><subject>Stations</subject><subject>Studies</subject><subject>Vegetation growth</subject><issn>0894-8755</issn><issn>1520-0442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9kE1LAzEQhoMoWD_uXoSA5-hMsslujrKtWikooueQrlmbUjc1SYXe_A_-Q3-Ju1Q8Dcw87zvwEHKGcIlYyqv7ejZlY4YVA6n73R4ZoeTAoCj4PhlBpQtWlVIekqOUlgDIFcCIpBsfU6aTtg0xU5tpHbqU46bJvnujlt75twUbuy75vKWPi5BD2nZ54bJv7Gq1pdc9-Onok331NvvQ0bHNNrlMXzdxaECt8OfrmwMW1He0XvjOnpCD1q6SO_2bx-TlZvJc37HZw-20vp6xRgiZWetQ6KrsC3Q5b-YWG-RSF02jHNe61KUSTmsE4LZVunAVSC4kwlwNFxTimFzsetcxfGxcymYZNrHrXxpeABSV5qh7CnZUE0NK0bVmHf27jVuDYAa1ZlBrxgYrM6g12EfOd5FlyiH-81wpxVUpxC_YlXTx</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Qin, Wenmin</creator><creator>Wang, Lunche</creator><creator>Zhang, Ming</creator><creator>Niu, Zigeng</creator><creator>Luo, Ming</creator><creator>Lin, Aiwen</creator><creator>Hu, Bo</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>7X2</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M0K</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20190501</creationdate><title>First Effort at Constructing a High-Density Photosynthetically Active Radiation Dataset during 1961–2014 in China</title><author>Qin, Wenmin ; Wang, Lunche ; Zhang, Ming ; Niu, Zigeng ; Luo, Ming ; Lin, Aiwen ; Hu, Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-fe1398796197bcba1c12594cc6e29979763e991002af694e80523510b6763e133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accuracy</topic><topic>Artificial intelligence</topic><topic>Atmospheric models</topic><topic>Climate and vegetation</topic><topic>Climate change</topic><topic>Climate models</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Datasets</topic><topic>Density</topic><topic>Ecological studies</topic><topic>Evolutionary algorithms</topic><topic>Humidity</topic><topic>Meteorological parameters</topic><topic>Methods</topic><topic>Model accuracy</topic><topic>Neural networks</topic><topic>Photosynthetically active radiation</topic><topic>Quality control</topic><topic>Radiation</topic><topic>Root-mean-square errors</topic><topic>Stations</topic><topic>Studies</topic><topic>Vegetation growth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qin, Wenmin</creatorcontrib><creatorcontrib>Wang, Lunche</creatorcontrib><creatorcontrib>Zhang, Ming</creatorcontrib><creatorcontrib>Niu, Zigeng</creatorcontrib><creatorcontrib>Luo, Ming</creatorcontrib><creatorcontrib>Lin, Aiwen</creatorcontrib><creatorcontrib>Hu, Bo</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Agricultural Science Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of climate</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qin, Wenmin</au><au>Wang, Lunche</au><au>Zhang, Ming</au><au>Niu, Zigeng</au><au>Luo, Ming</au><au>Lin, Aiwen</au><au>Hu, Bo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>First Effort at Constructing a High-Density Photosynthetically Active Radiation Dataset during 1961–2014 in China</atitle><jtitle>Journal of climate</jtitle><date>2019-05-01</date><risdate>2019</risdate><volume>32</volume><issue>10</issue><spage>2761</spage><epage>2780</epage><pages>2761-2780</pages><issn>0894-8755</issn><eissn>1520-0442</eissn><abstract>Photosynthetically active radiation (PAR) is a key factor for vegetation growth and climate change. Different types of PAR models, including four physically based models and eight artificial intelligence (AI) models, were proposed for predicting daily PAR. Multiyear daily meteorological parameters observed at 29 Chinese Ecosystem Research Network (CERN) stations and 2474 Chinese Meteorological Administration (CMA) stations across China were used for testing, validating, and comparing the above models. The optimized back propagation (BP) neural network based on the mind evolutionary algorithm (MEA-BP) was the model with highest accuracy and strongest robustness. The correlation coefficient R, mean absolute bias error (MAE), and RMSE for MEA-BP were 0.986, 0.302 MJ m−2 day−1 and 0.393 MJ m−2 day−1, respectively. Then, a high-density PAR dataset was constructed for the first time using the MEA-BP model at 2474 CMA stations of China. A quality control process and homogenization test (using RHtestsV4) for the PAR dataset were further conducted. This high-density PAR dataset would benefit many climate and ecological studies.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JCLI-D-18-0590.1</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0894-8755
ispartof Journal of climate, 2019-05, Vol.32 (10), p.2761-2780
issn 0894-8755
1520-0442
language eng
recordid cdi_proquest_journals_2400489219
source Jstor Complete Legacy; American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Accuracy
Artificial intelligence
Atmospheric models
Climate and vegetation
Climate change
Climate models
Correlation coefficient
Correlation coefficients
Datasets
Density
Ecological studies
Evolutionary algorithms
Humidity
Meteorological parameters
Methods
Model accuracy
Neural networks
Photosynthetically active radiation
Quality control
Radiation
Root-mean-square errors
Stations
Studies
Vegetation growth
title First Effort at Constructing a High-Density Photosynthetically Active Radiation Dataset during 1961–2014 in China
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T21%3A17%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=First%20Effort%20at%20Constructing%20a%20High-Density%20Photosynthetically%20Active%20Radiation%20Dataset%20during%201961%E2%80%932014%20in%20China&rft.jtitle=Journal%20of%20climate&rft.au=Qin,%20Wenmin&rft.date=2019-05-01&rft.volume=32&rft.issue=10&rft.spage=2761&rft.epage=2780&rft.pages=2761-2780&rft.issn=0894-8755&rft.eissn=1520-0442&rft_id=info:doi/10.1175/JCLI-D-18-0590.1&rft_dat=%3Cjstor_proqu%3E26662673%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2400489219&rft_id=info:pmid/&rft_jstor_id=26662673&rfr_iscdi=true