Co‐Interlayer Engineering toward Efficient Green Quasi‐Two‐Dimensional Perovskite Light‐Emitting Diodes

With respect to three‐dimensional (3D) perovskites, quasi‐two‐dimensional (quasi‐2D) perovskites have unique advantages in light‐emitting devices (LEDs), such as strong exciton binding energy and good phase stability. Interlayer ligand engineering is a key issue to endow them with these properties....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2020-05, Vol.30 (19), p.n/a
Hauptverfasser: Meng, Fanyuan, Liu, Xinyan, Chen, Yuxuan, Cai, Xinyi, Li, Mengke, Shi, Tingting, Chen, Ziming, Chen, Dongcheng, Yip, Hin‐Lap, Ramanan, Charusheela, Blom, Paul W. M., Su, Shi‐Jian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 19
container_start_page
container_title Advanced functional materials
container_volume 30
creator Meng, Fanyuan
Liu, Xinyan
Chen, Yuxuan
Cai, Xinyi
Li, Mengke
Shi, Tingting
Chen, Ziming
Chen, Dongcheng
Yip, Hin‐Lap
Ramanan, Charusheela
Blom, Paul W. M.
Su, Shi‐Jian
description With respect to three‐dimensional (3D) perovskites, quasi‐two‐dimensional (quasi‐2D) perovskites have unique advantages in light‐emitting devices (LEDs), such as strong exciton binding energy and good phase stability. Interlayer ligand engineering is a key issue to endow them with these properties. Rational design principles for interlayer materials and their processing techniques remain open to investigation. A co‐interlayer engineering strategy is developed to give efficient quasi‐2D perovskites by employing phenylbutylammonium bromide (PBABr) and propylammonium bromide (PABr) as the ligand materials. Preparation of these co‐interlayer quasi‐2D perovskite films is simple and highly controllable without using antisolvent treatment. Crystallization and morphology are readily manipulated by tuning the ratio of co‐interlayer components. Various optical techniques, including steady and ultrafast transient absorption and photoluminescence spectroscopies, are used to investigate their excitonic properties. Photoluminescence quantum yield (PLQY) of the perovskite film is dramatically improved to 89% due to the combined optimization of exciton binding energy and suppression of trap state formation. Accordingly, a high current efficiency of 66.1 cd A−1 and an external quantum efficiency of 15.1% are achieved for green co‐interlayer quasi‐2D perovskite LEDs without using any light out‐coupling techniques, indicating that co‐interlayer engineering is a simple and effective approach to develop high‐performance perovskite electroluminescence devices. Using a common single‐interlayer approach, a unique co‐interlayer ligand strategy is demonstrated to realize quasi‐2D perovskite light‐emitting diodes with a high external quantum efficiency of 15.1%. This is enabled by a facile and controllable one‐step spin‐coating method without additional antisolvent treatments.
doi_str_mv 10.1002/adfm.201910167
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2400398721</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2400398721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3177-5bc96475e1b21a0266749b13fc8828bb0efc36e29ba62e1b90e8ce585318c1aa3</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhoMoWKtXzwHPqTu7-TyWNq2FigoVvC2bdFK3Jrt1d2vpzZ_gb_SXmFCpR08zMM_zMryedw1kAITQW7GsmgElkAGBODnxehBDHDBC09PjDi_n3oW1a0IgSVjY8_RIf39-zZRDU4s9Gj9XK6kQjVQr3-mdMEs_rypZSlTOnxpE5T9thZWttdh17lg2qKzUStT-Ixr9Yd-kQ38uV6-uPeeNdK4LG0u9RHvpnVWitnj1O_ve8yRfjO6C-cN0NhrOg5K1nwVRUWZxmEQIBQVBaBwnYVYAq8o0pWlREKxKFiPNChHTFsoIpiVGacQgLUEI1vduDrkbo9-3aB1f661pf7SchoSwLE0otNTgQJVGW2uw4hsjG2H2HAjvSuVdqfxYaitkB2Ena9z_Q_PheHL_5_4AidaAeA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2400398721</pqid></control><display><type>article</type><title>Co‐Interlayer Engineering toward Efficient Green Quasi‐Two‐Dimensional Perovskite Light‐Emitting Diodes</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Meng, Fanyuan ; Liu, Xinyan ; Chen, Yuxuan ; Cai, Xinyi ; Li, Mengke ; Shi, Tingting ; Chen, Ziming ; Chen, Dongcheng ; Yip, Hin‐Lap ; Ramanan, Charusheela ; Blom, Paul W. M. ; Su, Shi‐Jian</creator><creatorcontrib>Meng, Fanyuan ; Liu, Xinyan ; Chen, Yuxuan ; Cai, Xinyi ; Li, Mengke ; Shi, Tingting ; Chen, Ziming ; Chen, Dongcheng ; Yip, Hin‐Lap ; Ramanan, Charusheela ; Blom, Paul W. M. ; Su, Shi‐Jian</creatorcontrib><description>With respect to three‐dimensional (3D) perovskites, quasi‐two‐dimensional (quasi‐2D) perovskites have unique advantages in light‐emitting devices (LEDs), such as strong exciton binding energy and good phase stability. Interlayer ligand engineering is a key issue to endow them with these properties. Rational design principles for interlayer materials and their processing techniques remain open to investigation. A co‐interlayer engineering strategy is developed to give efficient quasi‐2D perovskites by employing phenylbutylammonium bromide (PBABr) and propylammonium bromide (PABr) as the ligand materials. Preparation of these co‐interlayer quasi‐2D perovskite films is simple and highly controllable without using antisolvent treatment. Crystallization and morphology are readily manipulated by tuning the ratio of co‐interlayer components. Various optical techniques, including steady and ultrafast transient absorption and photoluminescence spectroscopies, are used to investigate their excitonic properties. Photoluminescence quantum yield (PLQY) of the perovskite film is dramatically improved to 89% due to the combined optimization of exciton binding energy and suppression of trap state formation. Accordingly, a high current efficiency of 66.1 cd A−1 and an external quantum efficiency of 15.1% are achieved for green co‐interlayer quasi‐2D perovskite LEDs without using any light out‐coupling techniques, indicating that co‐interlayer engineering is a simple and effective approach to develop high‐performance perovskite electroluminescence devices. Using a common single‐interlayer approach, a unique co‐interlayer ligand strategy is demonstrated to realize quasi‐2D perovskite light‐emitting diodes with a high external quantum efficiency of 15.1%. This is enabled by a facile and controllable one‐step spin‐coating method without additional antisolvent treatments.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201910167</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Binding energy ; Crystallization ; Current efficiency ; Electroluminescence ; Engineering ; Excitons ; Interlayers ; Ligands ; Materials science ; Morphology ; Optics ; Optimization ; perovskite light‐emitting diodes ; Perovskites ; Phase stability ; phenylbutylammonium bromide ; Photoluminescence ; propylammonium bromide ; Quantum efficiency</subject><ispartof>Advanced functional materials, 2020-05, Vol.30 (19), p.n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3177-5bc96475e1b21a0266749b13fc8828bb0efc36e29ba62e1b90e8ce585318c1aa3</citedby><cites>FETCH-LOGICAL-c3177-5bc96475e1b21a0266749b13fc8828bb0efc36e29ba62e1b90e8ce585318c1aa3</cites><orcidid>0000-0002-6545-9002</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201910167$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201910167$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Meng, Fanyuan</creatorcontrib><creatorcontrib>Liu, Xinyan</creatorcontrib><creatorcontrib>Chen, Yuxuan</creatorcontrib><creatorcontrib>Cai, Xinyi</creatorcontrib><creatorcontrib>Li, Mengke</creatorcontrib><creatorcontrib>Shi, Tingting</creatorcontrib><creatorcontrib>Chen, Ziming</creatorcontrib><creatorcontrib>Chen, Dongcheng</creatorcontrib><creatorcontrib>Yip, Hin‐Lap</creatorcontrib><creatorcontrib>Ramanan, Charusheela</creatorcontrib><creatorcontrib>Blom, Paul W. M.</creatorcontrib><creatorcontrib>Su, Shi‐Jian</creatorcontrib><title>Co‐Interlayer Engineering toward Efficient Green Quasi‐Two‐Dimensional Perovskite Light‐Emitting Diodes</title><title>Advanced functional materials</title><description>With respect to three‐dimensional (3D) perovskites, quasi‐two‐dimensional (quasi‐2D) perovskites have unique advantages in light‐emitting devices (LEDs), such as strong exciton binding energy and good phase stability. Interlayer ligand engineering is a key issue to endow them with these properties. Rational design principles for interlayer materials and their processing techniques remain open to investigation. A co‐interlayer engineering strategy is developed to give efficient quasi‐2D perovskites by employing phenylbutylammonium bromide (PBABr) and propylammonium bromide (PABr) as the ligand materials. Preparation of these co‐interlayer quasi‐2D perovskite films is simple and highly controllable without using antisolvent treatment. Crystallization and morphology are readily manipulated by tuning the ratio of co‐interlayer components. Various optical techniques, including steady and ultrafast transient absorption and photoluminescence spectroscopies, are used to investigate their excitonic properties. Photoluminescence quantum yield (PLQY) of the perovskite film is dramatically improved to 89% due to the combined optimization of exciton binding energy and suppression of trap state formation. Accordingly, a high current efficiency of 66.1 cd A−1 and an external quantum efficiency of 15.1% are achieved for green co‐interlayer quasi‐2D perovskite LEDs without using any light out‐coupling techniques, indicating that co‐interlayer engineering is a simple and effective approach to develop high‐performance perovskite electroluminescence devices. Using a common single‐interlayer approach, a unique co‐interlayer ligand strategy is demonstrated to realize quasi‐2D perovskite light‐emitting diodes with a high external quantum efficiency of 15.1%. This is enabled by a facile and controllable one‐step spin‐coating method without additional antisolvent treatments.</description><subject>Binding energy</subject><subject>Crystallization</subject><subject>Current efficiency</subject><subject>Electroluminescence</subject><subject>Engineering</subject><subject>Excitons</subject><subject>Interlayers</subject><subject>Ligands</subject><subject>Materials science</subject><subject>Morphology</subject><subject>Optics</subject><subject>Optimization</subject><subject>perovskite light‐emitting diodes</subject><subject>Perovskites</subject><subject>Phase stability</subject><subject>phenylbutylammonium bromide</subject><subject>Photoluminescence</subject><subject>propylammonium bromide</subject><subject>Quantum efficiency</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkE1Lw0AQhoMoWKtXzwHPqTu7-TyWNq2FigoVvC2bdFK3Jrt1d2vpzZ_gb_SXmFCpR08zMM_zMryedw1kAITQW7GsmgElkAGBODnxehBDHDBC09PjDi_n3oW1a0IgSVjY8_RIf39-zZRDU4s9Gj9XK6kQjVQr3-mdMEs_rypZSlTOnxpE5T9thZWttdh17lg2qKzUStT-Ixr9Yd-kQ38uV6-uPeeNdK4LG0u9RHvpnVWitnj1O_ve8yRfjO6C-cN0NhrOg5K1nwVRUWZxmEQIBQVBaBwnYVYAq8o0pWlREKxKFiPNChHTFsoIpiVGacQgLUEI1vduDrkbo9-3aB1f661pf7SchoSwLE0otNTgQJVGW2uw4hsjG2H2HAjvSuVdqfxYaitkB2Ena9z_Q_PheHL_5_4AidaAeA</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Meng, Fanyuan</creator><creator>Liu, Xinyan</creator><creator>Chen, Yuxuan</creator><creator>Cai, Xinyi</creator><creator>Li, Mengke</creator><creator>Shi, Tingting</creator><creator>Chen, Ziming</creator><creator>Chen, Dongcheng</creator><creator>Yip, Hin‐Lap</creator><creator>Ramanan, Charusheela</creator><creator>Blom, Paul W. M.</creator><creator>Su, Shi‐Jian</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6545-9002</orcidid></search><sort><creationdate>20200501</creationdate><title>Co‐Interlayer Engineering toward Efficient Green Quasi‐Two‐Dimensional Perovskite Light‐Emitting Diodes</title><author>Meng, Fanyuan ; Liu, Xinyan ; Chen, Yuxuan ; Cai, Xinyi ; Li, Mengke ; Shi, Tingting ; Chen, Ziming ; Chen, Dongcheng ; Yip, Hin‐Lap ; Ramanan, Charusheela ; Blom, Paul W. M. ; Su, Shi‐Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3177-5bc96475e1b21a0266749b13fc8828bb0efc36e29ba62e1b90e8ce585318c1aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Binding energy</topic><topic>Crystallization</topic><topic>Current efficiency</topic><topic>Electroluminescence</topic><topic>Engineering</topic><topic>Excitons</topic><topic>Interlayers</topic><topic>Ligands</topic><topic>Materials science</topic><topic>Morphology</topic><topic>Optics</topic><topic>Optimization</topic><topic>perovskite light‐emitting diodes</topic><topic>Perovskites</topic><topic>Phase stability</topic><topic>phenylbutylammonium bromide</topic><topic>Photoluminescence</topic><topic>propylammonium bromide</topic><topic>Quantum efficiency</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meng, Fanyuan</creatorcontrib><creatorcontrib>Liu, Xinyan</creatorcontrib><creatorcontrib>Chen, Yuxuan</creatorcontrib><creatorcontrib>Cai, Xinyi</creatorcontrib><creatorcontrib>Li, Mengke</creatorcontrib><creatorcontrib>Shi, Tingting</creatorcontrib><creatorcontrib>Chen, Ziming</creatorcontrib><creatorcontrib>Chen, Dongcheng</creatorcontrib><creatorcontrib>Yip, Hin‐Lap</creatorcontrib><creatorcontrib>Ramanan, Charusheela</creatorcontrib><creatorcontrib>Blom, Paul W. M.</creatorcontrib><creatorcontrib>Su, Shi‐Jian</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meng, Fanyuan</au><au>Liu, Xinyan</au><au>Chen, Yuxuan</au><au>Cai, Xinyi</au><au>Li, Mengke</au><au>Shi, Tingting</au><au>Chen, Ziming</au><au>Chen, Dongcheng</au><au>Yip, Hin‐Lap</au><au>Ramanan, Charusheela</au><au>Blom, Paul W. M.</au><au>Su, Shi‐Jian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Co‐Interlayer Engineering toward Efficient Green Quasi‐Two‐Dimensional Perovskite Light‐Emitting Diodes</atitle><jtitle>Advanced functional materials</jtitle><date>2020-05-01</date><risdate>2020</risdate><volume>30</volume><issue>19</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>With respect to three‐dimensional (3D) perovskites, quasi‐two‐dimensional (quasi‐2D) perovskites have unique advantages in light‐emitting devices (LEDs), such as strong exciton binding energy and good phase stability. Interlayer ligand engineering is a key issue to endow them with these properties. Rational design principles for interlayer materials and their processing techniques remain open to investigation. A co‐interlayer engineering strategy is developed to give efficient quasi‐2D perovskites by employing phenylbutylammonium bromide (PBABr) and propylammonium bromide (PABr) as the ligand materials. Preparation of these co‐interlayer quasi‐2D perovskite films is simple and highly controllable without using antisolvent treatment. Crystallization and morphology are readily manipulated by tuning the ratio of co‐interlayer components. Various optical techniques, including steady and ultrafast transient absorption and photoluminescence spectroscopies, are used to investigate their excitonic properties. Photoluminescence quantum yield (PLQY) of the perovskite film is dramatically improved to 89% due to the combined optimization of exciton binding energy and suppression of trap state formation. Accordingly, a high current efficiency of 66.1 cd A−1 and an external quantum efficiency of 15.1% are achieved for green co‐interlayer quasi‐2D perovskite LEDs without using any light out‐coupling techniques, indicating that co‐interlayer engineering is a simple and effective approach to develop high‐performance perovskite electroluminescence devices. Using a common single‐interlayer approach, a unique co‐interlayer ligand strategy is demonstrated to realize quasi‐2D perovskite light‐emitting diodes with a high external quantum efficiency of 15.1%. This is enabled by a facile and controllable one‐step spin‐coating method without additional antisolvent treatments.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201910167</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6545-9002</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2020-05, Vol.30 (19), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2400398721
source Wiley Online Library Journals Frontfile Complete
subjects Binding energy
Crystallization
Current efficiency
Electroluminescence
Engineering
Excitons
Interlayers
Ligands
Materials science
Morphology
Optics
Optimization
perovskite light‐emitting diodes
Perovskites
Phase stability
phenylbutylammonium bromide
Photoluminescence
propylammonium bromide
Quantum efficiency
title Co‐Interlayer Engineering toward Efficient Green Quasi‐Two‐Dimensional Perovskite Light‐Emitting Diodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T20%3A46%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Co%E2%80%90Interlayer%20Engineering%20toward%20Efficient%20Green%20Quasi%E2%80%90Two%E2%80%90Dimensional%20Perovskite%20Light%E2%80%90Emitting%20Diodes&rft.jtitle=Advanced%20functional%20materials&rft.au=Meng,%20Fanyuan&rft.date=2020-05-01&rft.volume=30&rft.issue=19&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201910167&rft_dat=%3Cproquest_cross%3E2400398721%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2400398721&rft_id=info:pmid/&rfr_iscdi=true