Co‐Interlayer Engineering toward Efficient Green Quasi‐Two‐Dimensional Perovskite Light‐Emitting Diodes
With respect to three‐dimensional (3D) perovskites, quasi‐two‐dimensional (quasi‐2D) perovskites have unique advantages in light‐emitting devices (LEDs), such as strong exciton binding energy and good phase stability. Interlayer ligand engineering is a key issue to endow them with these properties....
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2020-05, Vol.30 (19), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 19 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 30 |
creator | Meng, Fanyuan Liu, Xinyan Chen, Yuxuan Cai, Xinyi Li, Mengke Shi, Tingting Chen, Ziming Chen, Dongcheng Yip, Hin‐Lap Ramanan, Charusheela Blom, Paul W. M. Su, Shi‐Jian |
description | With respect to three‐dimensional (3D) perovskites, quasi‐two‐dimensional (quasi‐2D) perovskites have unique advantages in light‐emitting devices (LEDs), such as strong exciton binding energy and good phase stability. Interlayer ligand engineering is a key issue to endow them with these properties. Rational design principles for interlayer materials and their processing techniques remain open to investigation. A co‐interlayer engineering strategy is developed to give efficient quasi‐2D perovskites by employing phenylbutylammonium bromide (PBABr) and propylammonium bromide (PABr) as the ligand materials. Preparation of these co‐interlayer quasi‐2D perovskite films is simple and highly controllable without using antisolvent treatment. Crystallization and morphology are readily manipulated by tuning the ratio of co‐interlayer components. Various optical techniques, including steady and ultrafast transient absorption and photoluminescence spectroscopies, are used to investigate their excitonic properties. Photoluminescence quantum yield (PLQY) of the perovskite film is dramatically improved to 89% due to the combined optimization of exciton binding energy and suppression of trap state formation. Accordingly, a high current efficiency of 66.1 cd A−1 and an external quantum efficiency of 15.1% are achieved for green co‐interlayer quasi‐2D perovskite LEDs without using any light out‐coupling techniques, indicating that co‐interlayer engineering is a simple and effective approach to develop high‐performance perovskite electroluminescence devices.
Using a common single‐interlayer approach, a unique co‐interlayer ligand strategy is demonstrated to realize quasi‐2D perovskite light‐emitting diodes with a high external quantum efficiency of 15.1%. This is enabled by a facile and controllable one‐step spin‐coating method without additional antisolvent treatments. |
doi_str_mv | 10.1002/adfm.201910167 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2400398721</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2400398721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3177-5bc96475e1b21a0266749b13fc8828bb0efc36e29ba62e1b90e8ce585318c1aa3</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhoMoWKtXzwHPqTu7-TyWNq2FigoVvC2bdFK3Jrt1d2vpzZ_gb_SXmFCpR08zMM_zMryedw1kAITQW7GsmgElkAGBODnxehBDHDBC09PjDi_n3oW1a0IgSVjY8_RIf39-zZRDU4s9Gj9XK6kQjVQr3-mdMEs_rypZSlTOnxpE5T9thZWttdh17lg2qKzUStT-Ixr9Yd-kQ38uV6-uPeeNdK4LG0u9RHvpnVWitnj1O_ve8yRfjO6C-cN0NhrOg5K1nwVRUWZxmEQIBQVBaBwnYVYAq8o0pWlREKxKFiPNChHTFsoIpiVGacQgLUEI1vduDrkbo9-3aB1f661pf7SchoSwLE0otNTgQJVGW2uw4hsjG2H2HAjvSuVdqfxYaitkB2Ena9z_Q_PheHL_5_4AidaAeA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2400398721</pqid></control><display><type>article</type><title>Co‐Interlayer Engineering toward Efficient Green Quasi‐Two‐Dimensional Perovskite Light‐Emitting Diodes</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Meng, Fanyuan ; Liu, Xinyan ; Chen, Yuxuan ; Cai, Xinyi ; Li, Mengke ; Shi, Tingting ; Chen, Ziming ; Chen, Dongcheng ; Yip, Hin‐Lap ; Ramanan, Charusheela ; Blom, Paul W. M. ; Su, Shi‐Jian</creator><creatorcontrib>Meng, Fanyuan ; Liu, Xinyan ; Chen, Yuxuan ; Cai, Xinyi ; Li, Mengke ; Shi, Tingting ; Chen, Ziming ; Chen, Dongcheng ; Yip, Hin‐Lap ; Ramanan, Charusheela ; Blom, Paul W. M. ; Su, Shi‐Jian</creatorcontrib><description>With respect to three‐dimensional (3D) perovskites, quasi‐two‐dimensional (quasi‐2D) perovskites have unique advantages in light‐emitting devices (LEDs), such as strong exciton binding energy and good phase stability. Interlayer ligand engineering is a key issue to endow them with these properties. Rational design principles for interlayer materials and their processing techniques remain open to investigation. A co‐interlayer engineering strategy is developed to give efficient quasi‐2D perovskites by employing phenylbutylammonium bromide (PBABr) and propylammonium bromide (PABr) as the ligand materials. Preparation of these co‐interlayer quasi‐2D perovskite films is simple and highly controllable without using antisolvent treatment. Crystallization and morphology are readily manipulated by tuning the ratio of co‐interlayer components. Various optical techniques, including steady and ultrafast transient absorption and photoluminescence spectroscopies, are used to investigate their excitonic properties. Photoluminescence quantum yield (PLQY) of the perovskite film is dramatically improved to 89% due to the combined optimization of exciton binding energy and suppression of trap state formation. Accordingly, a high current efficiency of 66.1 cd A−1 and an external quantum efficiency of 15.1% are achieved for green co‐interlayer quasi‐2D perovskite LEDs without using any light out‐coupling techniques, indicating that co‐interlayer engineering is a simple and effective approach to develop high‐performance perovskite electroluminescence devices.
Using a common single‐interlayer approach, a unique co‐interlayer ligand strategy is demonstrated to realize quasi‐2D perovskite light‐emitting diodes with a high external quantum efficiency of 15.1%. This is enabled by a facile and controllable one‐step spin‐coating method without additional antisolvent treatments.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201910167</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Binding energy ; Crystallization ; Current efficiency ; Electroluminescence ; Engineering ; Excitons ; Interlayers ; Ligands ; Materials science ; Morphology ; Optics ; Optimization ; perovskite light‐emitting diodes ; Perovskites ; Phase stability ; phenylbutylammonium bromide ; Photoluminescence ; propylammonium bromide ; Quantum efficiency</subject><ispartof>Advanced functional materials, 2020-05, Vol.30 (19), p.n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3177-5bc96475e1b21a0266749b13fc8828bb0efc36e29ba62e1b90e8ce585318c1aa3</citedby><cites>FETCH-LOGICAL-c3177-5bc96475e1b21a0266749b13fc8828bb0efc36e29ba62e1b90e8ce585318c1aa3</cites><orcidid>0000-0002-6545-9002</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201910167$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201910167$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Meng, Fanyuan</creatorcontrib><creatorcontrib>Liu, Xinyan</creatorcontrib><creatorcontrib>Chen, Yuxuan</creatorcontrib><creatorcontrib>Cai, Xinyi</creatorcontrib><creatorcontrib>Li, Mengke</creatorcontrib><creatorcontrib>Shi, Tingting</creatorcontrib><creatorcontrib>Chen, Ziming</creatorcontrib><creatorcontrib>Chen, Dongcheng</creatorcontrib><creatorcontrib>Yip, Hin‐Lap</creatorcontrib><creatorcontrib>Ramanan, Charusheela</creatorcontrib><creatorcontrib>Blom, Paul W. M.</creatorcontrib><creatorcontrib>Su, Shi‐Jian</creatorcontrib><title>Co‐Interlayer Engineering toward Efficient Green Quasi‐Two‐Dimensional Perovskite Light‐Emitting Diodes</title><title>Advanced functional materials</title><description>With respect to three‐dimensional (3D) perovskites, quasi‐two‐dimensional (quasi‐2D) perovskites have unique advantages in light‐emitting devices (LEDs), such as strong exciton binding energy and good phase stability. Interlayer ligand engineering is a key issue to endow them with these properties. Rational design principles for interlayer materials and their processing techniques remain open to investigation. A co‐interlayer engineering strategy is developed to give efficient quasi‐2D perovskites by employing phenylbutylammonium bromide (PBABr) and propylammonium bromide (PABr) as the ligand materials. Preparation of these co‐interlayer quasi‐2D perovskite films is simple and highly controllable without using antisolvent treatment. Crystallization and morphology are readily manipulated by tuning the ratio of co‐interlayer components. Various optical techniques, including steady and ultrafast transient absorption and photoluminescence spectroscopies, are used to investigate their excitonic properties. Photoluminescence quantum yield (PLQY) of the perovskite film is dramatically improved to 89% due to the combined optimization of exciton binding energy and suppression of trap state formation. Accordingly, a high current efficiency of 66.1 cd A−1 and an external quantum efficiency of 15.1% are achieved for green co‐interlayer quasi‐2D perovskite LEDs without using any light out‐coupling techniques, indicating that co‐interlayer engineering is a simple and effective approach to develop high‐performance perovskite electroluminescence devices.
Using a common single‐interlayer approach, a unique co‐interlayer ligand strategy is demonstrated to realize quasi‐2D perovskite light‐emitting diodes with a high external quantum efficiency of 15.1%. This is enabled by a facile and controllable one‐step spin‐coating method without additional antisolvent treatments.</description><subject>Binding energy</subject><subject>Crystallization</subject><subject>Current efficiency</subject><subject>Electroluminescence</subject><subject>Engineering</subject><subject>Excitons</subject><subject>Interlayers</subject><subject>Ligands</subject><subject>Materials science</subject><subject>Morphology</subject><subject>Optics</subject><subject>Optimization</subject><subject>perovskite light‐emitting diodes</subject><subject>Perovskites</subject><subject>Phase stability</subject><subject>phenylbutylammonium bromide</subject><subject>Photoluminescence</subject><subject>propylammonium bromide</subject><subject>Quantum efficiency</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkE1Lw0AQhoMoWKtXzwHPqTu7-TyWNq2FigoVvC2bdFK3Jrt1d2vpzZ_gb_SXmFCpR08zMM_zMryedw1kAITQW7GsmgElkAGBODnxehBDHDBC09PjDi_n3oW1a0IgSVjY8_RIf39-zZRDU4s9Gj9XK6kQjVQr3-mdMEs_rypZSlTOnxpE5T9thZWttdh17lg2qKzUStT-Ixr9Yd-kQ38uV6-uPeeNdK4LG0u9RHvpnVWitnj1O_ve8yRfjO6C-cN0NhrOg5K1nwVRUWZxmEQIBQVBaBwnYVYAq8o0pWlREKxKFiPNChHTFsoIpiVGacQgLUEI1vduDrkbo9-3aB1f661pf7SchoSwLE0otNTgQJVGW2uw4hsjG2H2HAjvSuVdqfxYaitkB2Ena9z_Q_PheHL_5_4AidaAeA</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Meng, Fanyuan</creator><creator>Liu, Xinyan</creator><creator>Chen, Yuxuan</creator><creator>Cai, Xinyi</creator><creator>Li, Mengke</creator><creator>Shi, Tingting</creator><creator>Chen, Ziming</creator><creator>Chen, Dongcheng</creator><creator>Yip, Hin‐Lap</creator><creator>Ramanan, Charusheela</creator><creator>Blom, Paul W. M.</creator><creator>Su, Shi‐Jian</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6545-9002</orcidid></search><sort><creationdate>20200501</creationdate><title>Co‐Interlayer Engineering toward Efficient Green Quasi‐Two‐Dimensional Perovskite Light‐Emitting Diodes</title><author>Meng, Fanyuan ; Liu, Xinyan ; Chen, Yuxuan ; Cai, Xinyi ; Li, Mengke ; Shi, Tingting ; Chen, Ziming ; Chen, Dongcheng ; Yip, Hin‐Lap ; Ramanan, Charusheela ; Blom, Paul W. M. ; Su, Shi‐Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3177-5bc96475e1b21a0266749b13fc8828bb0efc36e29ba62e1b90e8ce585318c1aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Binding energy</topic><topic>Crystallization</topic><topic>Current efficiency</topic><topic>Electroluminescence</topic><topic>Engineering</topic><topic>Excitons</topic><topic>Interlayers</topic><topic>Ligands</topic><topic>Materials science</topic><topic>Morphology</topic><topic>Optics</topic><topic>Optimization</topic><topic>perovskite light‐emitting diodes</topic><topic>Perovskites</topic><topic>Phase stability</topic><topic>phenylbutylammonium bromide</topic><topic>Photoluminescence</topic><topic>propylammonium bromide</topic><topic>Quantum efficiency</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meng, Fanyuan</creatorcontrib><creatorcontrib>Liu, Xinyan</creatorcontrib><creatorcontrib>Chen, Yuxuan</creatorcontrib><creatorcontrib>Cai, Xinyi</creatorcontrib><creatorcontrib>Li, Mengke</creatorcontrib><creatorcontrib>Shi, Tingting</creatorcontrib><creatorcontrib>Chen, Ziming</creatorcontrib><creatorcontrib>Chen, Dongcheng</creatorcontrib><creatorcontrib>Yip, Hin‐Lap</creatorcontrib><creatorcontrib>Ramanan, Charusheela</creatorcontrib><creatorcontrib>Blom, Paul W. M.</creatorcontrib><creatorcontrib>Su, Shi‐Jian</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meng, Fanyuan</au><au>Liu, Xinyan</au><au>Chen, Yuxuan</au><au>Cai, Xinyi</au><au>Li, Mengke</au><au>Shi, Tingting</au><au>Chen, Ziming</au><au>Chen, Dongcheng</au><au>Yip, Hin‐Lap</au><au>Ramanan, Charusheela</au><au>Blom, Paul W. M.</au><au>Su, Shi‐Jian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Co‐Interlayer Engineering toward Efficient Green Quasi‐Two‐Dimensional Perovskite Light‐Emitting Diodes</atitle><jtitle>Advanced functional materials</jtitle><date>2020-05-01</date><risdate>2020</risdate><volume>30</volume><issue>19</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>With respect to three‐dimensional (3D) perovskites, quasi‐two‐dimensional (quasi‐2D) perovskites have unique advantages in light‐emitting devices (LEDs), such as strong exciton binding energy and good phase stability. Interlayer ligand engineering is a key issue to endow them with these properties. Rational design principles for interlayer materials and their processing techniques remain open to investigation. A co‐interlayer engineering strategy is developed to give efficient quasi‐2D perovskites by employing phenylbutylammonium bromide (PBABr) and propylammonium bromide (PABr) as the ligand materials. Preparation of these co‐interlayer quasi‐2D perovskite films is simple and highly controllable without using antisolvent treatment. Crystallization and morphology are readily manipulated by tuning the ratio of co‐interlayer components. Various optical techniques, including steady and ultrafast transient absorption and photoluminescence spectroscopies, are used to investigate their excitonic properties. Photoluminescence quantum yield (PLQY) of the perovskite film is dramatically improved to 89% due to the combined optimization of exciton binding energy and suppression of trap state formation. Accordingly, a high current efficiency of 66.1 cd A−1 and an external quantum efficiency of 15.1% are achieved for green co‐interlayer quasi‐2D perovskite LEDs without using any light out‐coupling techniques, indicating that co‐interlayer engineering is a simple and effective approach to develop high‐performance perovskite electroluminescence devices.
Using a common single‐interlayer approach, a unique co‐interlayer ligand strategy is demonstrated to realize quasi‐2D perovskite light‐emitting diodes with a high external quantum efficiency of 15.1%. This is enabled by a facile and controllable one‐step spin‐coating method without additional antisolvent treatments.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201910167</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6545-9002</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2020-05, Vol.30 (19), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2400398721 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Binding energy Crystallization Current efficiency Electroluminescence Engineering Excitons Interlayers Ligands Materials science Morphology Optics Optimization perovskite light‐emitting diodes Perovskites Phase stability phenylbutylammonium bromide Photoluminescence propylammonium bromide Quantum efficiency |
title | Co‐Interlayer Engineering toward Efficient Green Quasi‐Two‐Dimensional Perovskite Light‐Emitting Diodes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T20%3A46%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Co%E2%80%90Interlayer%20Engineering%20toward%20Efficient%20Green%20Quasi%E2%80%90Two%E2%80%90Dimensional%20Perovskite%20Light%E2%80%90Emitting%20Diodes&rft.jtitle=Advanced%20functional%20materials&rft.au=Meng,%20Fanyuan&rft.date=2020-05-01&rft.volume=30&rft.issue=19&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201910167&rft_dat=%3Cproquest_cross%3E2400398721%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2400398721&rft_id=info:pmid/&rfr_iscdi=true |