CsPbBr3 Nanocrystal Films: Deviations from Bulk Vibrational and Optoelectronic Properties

Metal‐halide perovskites (MHP) are highly promising semiconductors for light‐emitting and photovoltaic applications. The colloidal synthesis of nanocrystals (NCs) is an effective approach for obtaining nearly defect‐free MHP that can be processed into inks for low‐cost, high‐performance device fabri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2020-05, Vol.30 (19), p.n/a
Hauptverfasser: Motti, Silvia G., Krieg, Franziska, Ramadan, Alexandra J., Patel, Jay B., Snaith, Henry J., Kovalenko, Maksym V., Johnston, Michael B., Herz, Laura M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 19
container_start_page
container_title Advanced functional materials
container_volume 30
creator Motti, Silvia G.
Krieg, Franziska
Ramadan, Alexandra J.
Patel, Jay B.
Snaith, Henry J.
Kovalenko, Maksym V.
Johnston, Michael B.
Herz, Laura M.
description Metal‐halide perovskites (MHP) are highly promising semiconductors for light‐emitting and photovoltaic applications. The colloidal synthesis of nanocrystals (NCs) is an effective approach for obtaining nearly defect‐free MHP that can be processed into inks for low‐cost, high‐performance device fabrication. However, disentangling the effects of surface ligands, morphology, and boundaries on charge‐carrier transport in thin films fabricated with these high‐quality NCs is inherently difficult. To overcome this fundamental challenge, terahertz (THz) spectroscopy is employed to optically probe the photoconductivity of CsPbBr3 NC films. The vibrational and optoelectronic properties of the NCs are compared with those of the corresponding bulk polycrystalline perovskite and significant deviations are found. Charge‐carrier mobilities and recombination rates are demonstrated to vary significantly with the NC size. Such dependences derive from the localized nature of charge carriers within NCs, with local mobilities dominating over interparticle transport. It is further shown that the colloidally synthesized NCs have distinct vibrational properties with respect to the bulk perovskite, exhibiting blue‐shifted optical phonon modes with enhanced THz absorption strength that also manifest as strong modulations in the THz photoconductivity spectra. Such fundamental insights into NC versus bulk properties will guide the optimization of nanocrystalline perovskite thin films for optoelectronic applications. The optoelectronic properties of CsPbBr3 nanocrystal films are investigated in comparison to those of a bulk polycrystalline film. The terahertz photoconductivity shows localization of charge carriers in nanocrystals even after partial sintering. The nanocrystals show expansion of the lattice, blue‐shifted phonon spectra, and enhanced coupling of phonon modes to the terahertz probe with respect to the bulk.
doi_str_mv 10.1002/adfm.201909904
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2400398687</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2400398687</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2734-68e7df0b6bf1005608a696a4922a0a41f335af03d964bb544b79ecd1d7ef9ce83</originalsourceid><addsrcrecordid>eNo9kElPwzAQRi0EEqVw5WyJc8p4qRNz60IBqdAeAMHJchJbckniYKeg_ntSQD3NoqfRNw-hSwIjAkCvdWnrEQUiQUrgR2hABBEJA5odH3rydorOYtwAkDRlfIDeZ3GdTwPDT7rxRdjFTld44ao63uC5-XK6c76J2AZf4-m2-sCvLg-_y57TTYlXbedNZYou-MYVeB18a0LnTDxHJ1ZX0Vz81yF6Wdw-z-6T5eruYTZZJi3tEyQiM2lpIRe57b8YC8i0kEJzSakGzYllbKwtsFIKnudjzvNUmqIkZWqsLEzGhujq724b_OfWxE5t_Db08aKiHIDJTGRpT8k_6ttVZqfa4GoddoqA2rtTe3fq4E5N5ovHw8R-ABXgZaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2400398687</pqid></control><display><type>article</type><title>CsPbBr3 Nanocrystal Films: Deviations from Bulk Vibrational and Optoelectronic Properties</title><source>Access via Wiley Online Library</source><creator>Motti, Silvia G. ; Krieg, Franziska ; Ramadan, Alexandra J. ; Patel, Jay B. ; Snaith, Henry J. ; Kovalenko, Maksym V. ; Johnston, Michael B. ; Herz, Laura M.</creator><creatorcontrib>Motti, Silvia G. ; Krieg, Franziska ; Ramadan, Alexandra J. ; Patel, Jay B. ; Snaith, Henry J. ; Kovalenko, Maksym V. ; Johnston, Michael B. ; Herz, Laura M.</creatorcontrib><description>Metal‐halide perovskites (MHP) are highly promising semiconductors for light‐emitting and photovoltaic applications. The colloidal synthesis of nanocrystals (NCs) is an effective approach for obtaining nearly defect‐free MHP that can be processed into inks for low‐cost, high‐performance device fabrication. However, disentangling the effects of surface ligands, morphology, and boundaries on charge‐carrier transport in thin films fabricated with these high‐quality NCs is inherently difficult. To overcome this fundamental challenge, terahertz (THz) spectroscopy is employed to optically probe the photoconductivity of CsPbBr3 NC films. The vibrational and optoelectronic properties of the NCs are compared with those of the corresponding bulk polycrystalline perovskite and significant deviations are found. Charge‐carrier mobilities and recombination rates are demonstrated to vary significantly with the NC size. Such dependences derive from the localized nature of charge carriers within NCs, with local mobilities dominating over interparticle transport. It is further shown that the colloidally synthesized NCs have distinct vibrational properties with respect to the bulk perovskite, exhibiting blue‐shifted optical phonon modes with enhanced THz absorption strength that also manifest as strong modulations in the THz photoconductivity spectra. Such fundamental insights into NC versus bulk properties will guide the optimization of nanocrystalline perovskite thin films for optoelectronic applications. The optoelectronic properties of CsPbBr3 nanocrystal films are investigated in comparison to those of a bulk polycrystalline film. The terahertz photoconductivity shows localization of charge carriers in nanocrystals even after partial sintering. The nanocrystals show expansion of the lattice, blue‐shifted phonon spectra, and enhanced coupling of phonon modes to the terahertz probe with respect to the bulk.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201909904</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Carrier recombination ; Carrier transport ; Charge transport ; charge‐carrier dynamics ; Current carriers ; Inks ; Materials science ; Morphology ; Nanocrystals ; Optical properties ; Optimization ; Optoelectronics ; Perovskites ; Photoconductivity ; Silicon ; Spectrum analysis ; Thin films</subject><ispartof>Advanced functional materials, 2020-05, Vol.30 (19), p.n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9621-334X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201909904$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201909904$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27925,27926,45575,45576</link.rule.ids></links><search><creatorcontrib>Motti, Silvia G.</creatorcontrib><creatorcontrib>Krieg, Franziska</creatorcontrib><creatorcontrib>Ramadan, Alexandra J.</creatorcontrib><creatorcontrib>Patel, Jay B.</creatorcontrib><creatorcontrib>Snaith, Henry J.</creatorcontrib><creatorcontrib>Kovalenko, Maksym V.</creatorcontrib><creatorcontrib>Johnston, Michael B.</creatorcontrib><creatorcontrib>Herz, Laura M.</creatorcontrib><title>CsPbBr3 Nanocrystal Films: Deviations from Bulk Vibrational and Optoelectronic Properties</title><title>Advanced functional materials</title><description>Metal‐halide perovskites (MHP) are highly promising semiconductors for light‐emitting and photovoltaic applications. The colloidal synthesis of nanocrystals (NCs) is an effective approach for obtaining nearly defect‐free MHP that can be processed into inks for low‐cost, high‐performance device fabrication. However, disentangling the effects of surface ligands, morphology, and boundaries on charge‐carrier transport in thin films fabricated with these high‐quality NCs is inherently difficult. To overcome this fundamental challenge, terahertz (THz) spectroscopy is employed to optically probe the photoconductivity of CsPbBr3 NC films. The vibrational and optoelectronic properties of the NCs are compared with those of the corresponding bulk polycrystalline perovskite and significant deviations are found. Charge‐carrier mobilities and recombination rates are demonstrated to vary significantly with the NC size. Such dependences derive from the localized nature of charge carriers within NCs, with local mobilities dominating over interparticle transport. It is further shown that the colloidally synthesized NCs have distinct vibrational properties with respect to the bulk perovskite, exhibiting blue‐shifted optical phonon modes with enhanced THz absorption strength that also manifest as strong modulations in the THz photoconductivity spectra. Such fundamental insights into NC versus bulk properties will guide the optimization of nanocrystalline perovskite thin films for optoelectronic applications. The optoelectronic properties of CsPbBr3 nanocrystal films are investigated in comparison to those of a bulk polycrystalline film. The terahertz photoconductivity shows localization of charge carriers in nanocrystals even after partial sintering. The nanocrystals show expansion of the lattice, blue‐shifted phonon spectra, and enhanced coupling of phonon modes to the terahertz probe with respect to the bulk.</description><subject>Carrier recombination</subject><subject>Carrier transport</subject><subject>Charge transport</subject><subject>charge‐carrier dynamics</subject><subject>Current carriers</subject><subject>Inks</subject><subject>Materials science</subject><subject>Morphology</subject><subject>Nanocrystals</subject><subject>Optical properties</subject><subject>Optimization</subject><subject>Optoelectronics</subject><subject>Perovskites</subject><subject>Photoconductivity</subject><subject>Silicon</subject><subject>Spectrum analysis</subject><subject>Thin films</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kElPwzAQRi0EEqVw5WyJc8p4qRNz60IBqdAeAMHJchJbckniYKeg_ntSQD3NoqfRNw-hSwIjAkCvdWnrEQUiQUrgR2hABBEJA5odH3rydorOYtwAkDRlfIDeZ3GdTwPDT7rxRdjFTld44ao63uC5-XK6c76J2AZf4-m2-sCvLg-_y57TTYlXbedNZYou-MYVeB18a0LnTDxHJ1ZX0Vz81yF6Wdw-z-6T5eruYTZZJi3tEyQiM2lpIRe57b8YC8i0kEJzSakGzYllbKwtsFIKnudjzvNUmqIkZWqsLEzGhujq724b_OfWxE5t_Db08aKiHIDJTGRpT8k_6ttVZqfa4GoddoqA2rtTe3fq4E5N5ovHw8R-ABXgZaQ</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Motti, Silvia G.</creator><creator>Krieg, Franziska</creator><creator>Ramadan, Alexandra J.</creator><creator>Patel, Jay B.</creator><creator>Snaith, Henry J.</creator><creator>Kovalenko, Maksym V.</creator><creator>Johnston, Michael B.</creator><creator>Herz, Laura M.</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9621-334X</orcidid></search><sort><creationdate>20200501</creationdate><title>CsPbBr3 Nanocrystal Films: Deviations from Bulk Vibrational and Optoelectronic Properties</title><author>Motti, Silvia G. ; Krieg, Franziska ; Ramadan, Alexandra J. ; Patel, Jay B. ; Snaith, Henry J. ; Kovalenko, Maksym V. ; Johnston, Michael B. ; Herz, Laura M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2734-68e7df0b6bf1005608a696a4922a0a41f335af03d964bb544b79ecd1d7ef9ce83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Carrier recombination</topic><topic>Carrier transport</topic><topic>Charge transport</topic><topic>charge‐carrier dynamics</topic><topic>Current carriers</topic><topic>Inks</topic><topic>Materials science</topic><topic>Morphology</topic><topic>Nanocrystals</topic><topic>Optical properties</topic><topic>Optimization</topic><topic>Optoelectronics</topic><topic>Perovskites</topic><topic>Photoconductivity</topic><topic>Silicon</topic><topic>Spectrum analysis</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Motti, Silvia G.</creatorcontrib><creatorcontrib>Krieg, Franziska</creatorcontrib><creatorcontrib>Ramadan, Alexandra J.</creatorcontrib><creatorcontrib>Patel, Jay B.</creatorcontrib><creatorcontrib>Snaith, Henry J.</creatorcontrib><creatorcontrib>Kovalenko, Maksym V.</creatorcontrib><creatorcontrib>Johnston, Michael B.</creatorcontrib><creatorcontrib>Herz, Laura M.</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Motti, Silvia G.</au><au>Krieg, Franziska</au><au>Ramadan, Alexandra J.</au><au>Patel, Jay B.</au><au>Snaith, Henry J.</au><au>Kovalenko, Maksym V.</au><au>Johnston, Michael B.</au><au>Herz, Laura M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CsPbBr3 Nanocrystal Films: Deviations from Bulk Vibrational and Optoelectronic Properties</atitle><jtitle>Advanced functional materials</jtitle><date>2020-05-01</date><risdate>2020</risdate><volume>30</volume><issue>19</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Metal‐halide perovskites (MHP) are highly promising semiconductors for light‐emitting and photovoltaic applications. The colloidal synthesis of nanocrystals (NCs) is an effective approach for obtaining nearly defect‐free MHP that can be processed into inks for low‐cost, high‐performance device fabrication. However, disentangling the effects of surface ligands, morphology, and boundaries on charge‐carrier transport in thin films fabricated with these high‐quality NCs is inherently difficult. To overcome this fundamental challenge, terahertz (THz) spectroscopy is employed to optically probe the photoconductivity of CsPbBr3 NC films. The vibrational and optoelectronic properties of the NCs are compared with those of the corresponding bulk polycrystalline perovskite and significant deviations are found. Charge‐carrier mobilities and recombination rates are demonstrated to vary significantly with the NC size. Such dependences derive from the localized nature of charge carriers within NCs, with local mobilities dominating over interparticle transport. It is further shown that the colloidally synthesized NCs have distinct vibrational properties with respect to the bulk perovskite, exhibiting blue‐shifted optical phonon modes with enhanced THz absorption strength that also manifest as strong modulations in the THz photoconductivity spectra. Such fundamental insights into NC versus bulk properties will guide the optimization of nanocrystalline perovskite thin films for optoelectronic applications. The optoelectronic properties of CsPbBr3 nanocrystal films are investigated in comparison to those of a bulk polycrystalline film. The terahertz photoconductivity shows localization of charge carriers in nanocrystals even after partial sintering. The nanocrystals show expansion of the lattice, blue‐shifted phonon spectra, and enhanced coupling of phonon modes to the terahertz probe with respect to the bulk.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201909904</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9621-334X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2020-05, Vol.30 (19), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2400398687
source Access via Wiley Online Library
subjects Carrier recombination
Carrier transport
Charge transport
charge‐carrier dynamics
Current carriers
Inks
Materials science
Morphology
Nanocrystals
Optical properties
Optimization
Optoelectronics
Perovskites
Photoconductivity
Silicon
Spectrum analysis
Thin films
title CsPbBr3 Nanocrystal Films: Deviations from Bulk Vibrational and Optoelectronic Properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T14%3A23%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CsPbBr3%20Nanocrystal%20Films:%20Deviations%20from%20Bulk%20Vibrational%20and%20Optoelectronic%20Properties&rft.jtitle=Advanced%20functional%20materials&rft.au=Motti,%20Silvia%20G.&rft.date=2020-05-01&rft.volume=30&rft.issue=19&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201909904&rft_dat=%3Cproquest_wiley%3E2400398687%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2400398687&rft_id=info:pmid/&rfr_iscdi=true