Unitarity and the holographic S-Matrix

A bstract The bulk S-Matrix can be given a non-perturbative definition in terms of the flat space limit of AdS/CFT. We show that the unitarity of the S-Matrix, ie the optical theorem, can be derived by studying the behavior of the OPE and the conformal block decomposition in the flat space limit. Wh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2012-10, Vol.2012 (10), Article 32
Hauptverfasser: Fitzpatrick, A. Liam, Kaplan, Jared
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page
container_title The journal of high energy physics
container_volume 2012
creator Fitzpatrick, A. Liam
Kaplan, Jared
description A bstract The bulk S-Matrix can be given a non-perturbative definition in terms of the flat space limit of AdS/CFT. We show that the unitarity of the S-Matrix, ie the optical theorem, can be derived by studying the behavior of the OPE and the conformal block decomposition in the flat space limit. When applied to perturbation theory in AdS, this gives a holographic derivation of the cutting rules for Feynman diagrams. To demonstrate these facts we introduce some new techniques for the analysis of conformal field theories. Chief among these is a method for conglomerating local primary operators and to extract the contribution of an individual primary in their OPE. This provides a method for isolating the contribution of specific conformal blocks which we use to prove an important relation between certain conformal block coefficients and anomalous dimensions. These techniques make essential use of the simplifications that occur when CFT correlators are expressed in terms of a Mellin amplitude.
doi_str_mv 10.1007/JHEP10(2012)032
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_journals_2400307601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2400307601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-47b45241141cb34e2e214732148362e78501f69b2c66e188bbea329e48bb8f353</originalsourceid><addsrcrecordid>eNp1kMFLwzAUh4MoOKdnr0VB9FD3XpI26VHGdMpEQXcOaUzXjtnOJIPtvzejgl68vPcO3-_H4yPkHOEWAcToaTp5RbimgPQGGD0gAwRapJKL4vDPfUxOvF8CYIYFDMjVvG2Cdk3YJbr9SEJtk7pbdQun13Vjkrf0WQfXbE_JUaVX3p797CGZ30_ex9N09vLwOL6bpYYJGVIuSp5RjsjRlIxbailyweKQLKdWyAywyouSmjy3KGVZWs1oYXm8ZMUyNiQXfW_nQ6O8aYI1tena1pqgEHghch6hyx5au-5rY31Qy27j2viXohyAgcgBIzXqKeM6752t1No1n9rtYo_aG1O9MbU3pqKxmIA-4SPZLqz77f0v8g3Z7Wl8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2400307601</pqid></control><display><type>article</type><title>Unitarity and the holographic S-Matrix</title><source>Springer Nature OA Free Journals</source><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Fitzpatrick, A. Liam ; Kaplan, Jared</creator><creatorcontrib>Fitzpatrick, A. Liam ; Kaplan, Jared ; SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><description>A bstract The bulk S-Matrix can be given a non-perturbative definition in terms of the flat space limit of AdS/CFT. We show that the unitarity of the S-Matrix, ie the optical theorem, can be derived by studying the behavior of the OPE and the conformal block decomposition in the flat space limit. When applied to perturbation theory in AdS, this gives a holographic derivation of the cutting rules for Feynman diagrams. To demonstrate these facts we introduce some new techniques for the analysis of conformal field theories. Chief among these is a method for conglomerating local primary operators and to extract the contribution of an individual primary in their OPE. This provides a method for isolating the contribution of specific conformal blocks which we use to prove an important relation between certain conformal block coefficients and anomalous dimensions. These techniques make essential use of the simplifications that occur when CFT correlators are expressed in terms of a Mellin amplitude.</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP10(2012)032</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>ANOMALOUS DIMENSION ; Classical and Quantum Gravitation ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Correlators ; Elementary Particles ; FEYNMAN DIAGRAM ; Feynman diagrams ; FIELD THEORIES ; High energy physics ; OPTICAL THEOREM ; PERTURBATION THEORY ; Phenomenology-HEP, Theory-HEP,HEPPH, HEPTH ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Relativity Theory ; S MATRIX ; S matrix theory ; String Theory ; UNITARITY</subject><ispartof>The journal of high energy physics, 2012-10, Vol.2012 (10), Article 32</ispartof><rights>SISSA 2012</rights><rights>SISSA 2012.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-47b45241141cb34e2e214732148362e78501f69b2c66e188bbea329e48bb8f353</citedby><cites>FETCH-LOGICAL-c378t-47b45241141cb34e2e214732148362e78501f69b2c66e188bbea329e48bb8f353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/JHEP10(2012)032$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1007/JHEP10(2012)032$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41120,41488,42189,42557,51319,51576</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1049764$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Fitzpatrick, A. Liam</creatorcontrib><creatorcontrib>Kaplan, Jared</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><title>Unitarity and the holographic S-Matrix</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>A bstract The bulk S-Matrix can be given a non-perturbative definition in terms of the flat space limit of AdS/CFT. We show that the unitarity of the S-Matrix, ie the optical theorem, can be derived by studying the behavior of the OPE and the conformal block decomposition in the flat space limit. When applied to perturbation theory in AdS, this gives a holographic derivation of the cutting rules for Feynman diagrams. To demonstrate these facts we introduce some new techniques for the analysis of conformal field theories. Chief among these is a method for conglomerating local primary operators and to extract the contribution of an individual primary in their OPE. This provides a method for isolating the contribution of specific conformal blocks which we use to prove an important relation between certain conformal block coefficients and anomalous dimensions. These techniques make essential use of the simplifications that occur when CFT correlators are expressed in terms of a Mellin amplitude.</description><subject>ANOMALOUS DIMENSION</subject><subject>Classical and Quantum Gravitation</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Correlators</subject><subject>Elementary Particles</subject><subject>FEYNMAN DIAGRAM</subject><subject>Feynman diagrams</subject><subject>FIELD THEORIES</subject><subject>High energy physics</subject><subject>OPTICAL THEOREM</subject><subject>PERTURBATION THEORY</subject><subject>Phenomenology-HEP, Theory-HEP,HEPPH, HEPTH</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>S MATRIX</subject><subject>S matrix theory</subject><subject>String Theory</subject><subject>UNITARITY</subject><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kMFLwzAUh4MoOKdnr0VB9FD3XpI26VHGdMpEQXcOaUzXjtnOJIPtvzejgl68vPcO3-_H4yPkHOEWAcToaTp5RbimgPQGGD0gAwRapJKL4vDPfUxOvF8CYIYFDMjVvG2Cdk3YJbr9SEJtk7pbdQun13Vjkrf0WQfXbE_JUaVX3p797CGZ30_ex9N09vLwOL6bpYYJGVIuSp5RjsjRlIxbailyweKQLKdWyAywyouSmjy3KGVZWs1oYXm8ZMUyNiQXfW_nQ6O8aYI1tena1pqgEHghch6hyx5au-5rY31Qy27j2viXohyAgcgBIzXqKeM6752t1No1n9rtYo_aG1O9MbU3pqKxmIA-4SPZLqz77f0v8g3Z7Wl8</recordid><startdate>20121001</startdate><enddate>20121001</enddate><creator>Fitzpatrick, A. Liam</creator><creator>Kaplan, Jared</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20121001</creationdate><title>Unitarity and the holographic S-Matrix</title><author>Fitzpatrick, A. Liam ; Kaplan, Jared</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-47b45241141cb34e2e214732148362e78501f69b2c66e188bbea329e48bb8f353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>ANOMALOUS DIMENSION</topic><topic>Classical and Quantum Gravitation</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Correlators</topic><topic>Elementary Particles</topic><topic>FEYNMAN DIAGRAM</topic><topic>Feynman diagrams</topic><topic>FIELD THEORIES</topic><topic>High energy physics</topic><topic>OPTICAL THEOREM</topic><topic>PERTURBATION THEORY</topic><topic>Phenomenology-HEP, Theory-HEP,HEPPH, HEPTH</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>S MATRIX</topic><topic>S matrix theory</topic><topic>String Theory</topic><topic>UNITARITY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fitzpatrick, A. Liam</creatorcontrib><creatorcontrib>Kaplan, Jared</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fitzpatrick, A. Liam</au><au>Kaplan, Jared</au><aucorp>SLAC National Accelerator Lab., Menlo Park, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unitarity and the holographic S-Matrix</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2012-10-01</date><risdate>2012</risdate><volume>2012</volume><issue>10</issue><artnum>32</artnum><issn>1029-8479</issn><eissn>1029-8479</eissn><abstract>A bstract The bulk S-Matrix can be given a non-perturbative definition in terms of the flat space limit of AdS/CFT. We show that the unitarity of the S-Matrix, ie the optical theorem, can be derived by studying the behavior of the OPE and the conformal block decomposition in the flat space limit. When applied to perturbation theory in AdS, this gives a holographic derivation of the cutting rules for Feynman diagrams. To demonstrate these facts we introduce some new techniques for the analysis of conformal field theories. Chief among these is a method for conglomerating local primary operators and to extract the contribution of an individual primary in their OPE. This provides a method for isolating the contribution of specific conformal blocks which we use to prove an important relation between certain conformal block coefficients and anomalous dimensions. These techniques make essential use of the simplifications that occur when CFT correlators are expressed in terms of a Mellin amplitude.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/JHEP10(2012)032</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1029-8479
ispartof The journal of high energy physics, 2012-10, Vol.2012 (10), Article 32
issn 1029-8479
1029-8479
language eng
recordid cdi_proquest_journals_2400307601
source Springer Nature OA Free Journals; Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects ANOMALOUS DIMENSION
Classical and Quantum Gravitation
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Correlators
Elementary Particles
FEYNMAN DIAGRAM
Feynman diagrams
FIELD THEORIES
High energy physics
OPTICAL THEOREM
PERTURBATION THEORY
Phenomenology-HEP, Theory-HEP,HEPPH, HEPTH
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Relativity Theory
S MATRIX
S matrix theory
String Theory
UNITARITY
title Unitarity and the holographic S-Matrix
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A05%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unitarity%20and%20the%20holographic%20S-Matrix&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Fitzpatrick,%20A.%20Liam&rft.aucorp=SLAC%20National%20Accelerator%20Lab.,%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2012-10-01&rft.volume=2012&rft.issue=10&rft.artnum=32&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP10(2012)032&rft_dat=%3Cproquest_osti_%3E2400307601%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2400307601&rft_id=info:pmid/&rfr_iscdi=true