Continuous‐Flow Synthesis of ZIF‐8 Biocomposites with Tunable Particle Size

Zeolitic imidazolate framework (ZIF) biocomposites show the capacity to protect and deliver biotherapeutics. To date, the progress in this research area is based on laboratory batch methods. Now, the first continuous flow synthetic method is presented for the encapsulation of a model protein (bovine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie 2020-05, Vol.132 (21), p.8200-8204
Hauptverfasser: Carraro, Francesco, Williams, Jason D., Linares‐Moreau, Mercedes, Parise, Chiara, Liang, Weibin, Amenitsch, Heinz, Doonan, Christian, Kappe, C. Oliver, Falcaro, Paolo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8204
container_issue 21
container_start_page 8200
container_title Angewandte Chemie
container_volume 132
creator Carraro, Francesco
Williams, Jason D.
Linares‐Moreau, Mercedes
Parise, Chiara
Liang, Weibin
Amenitsch, Heinz
Doonan, Christian
Kappe, C. Oliver
Falcaro, Paolo
description Zeolitic imidazolate framework (ZIF) biocomposites show the capacity to protect and deliver biotherapeutics. To date, the progress in this research area is based on laboratory batch methods. Now, the first continuous flow synthetic method is presented for the encapsulation of a model protein (bovine serum albumin, BSA) and a clinical therapeutic (α1‐antitrypsin, AAT) in ZIF‐8. The in situ kinetics of nucleation, growth, and crystallization of BSA@ZIF‐8 were studied by small‐angle X‐ray scattering. By controlling the injection time of ethanol, the particle growth could be quenched by ethanol‐induced crystallization from amorphous particles to ZIF‐8 crystals. The particle size of the biocomposite was tuned in the 40–100 nm range by varying residence time prior to introduction of ethanol. As a proof‐of‐concept, this procedure was used for the encapsulation of AAT in ZIF‐8. Upon release of the biotherapeutic from the composite, the trypsin inhibitor function of AAT was preserved. Genau richtig: Die Partikelgröße von ZIF‐8‐Biokompositen kann durch kontrollierte Injektion von Ethanol in die ZIF‐Vorläuferlösung präzise abgestimmt werden. Basierend auf dem abrupten Übergang von amorpher zu kristalliner Phase wurde eine Ethanol‐Quenchingmethode genutzt, um die Partikelabmessungen auf den Bereich 40–100 nm einzuschränken. Diese Durchflusssynthese ermöglicht die Anwendung von Biotherapeutika in ZIF‐8 für die Biomedizin.
doi_str_mv 10.1002/ange.202000678
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2400280806</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2400280806</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2028-4efeb60cc04c66a4292d061774d2ce64d5a5294da1c2f65e2f3e7f631f6b57463</originalsourceid><addsrcrecordid>eNqFkLFOwzAQhi0EEqWwMkdiTjk7jp2MpaKlUkWRWhYWy3Vs6iqNi52oKhOPwDPyJCQqgpHpTqfvvzt9CF1jGGAAciurVz0gQACA8ewE9XBKcJzwlJ-iHgClcUZofo4uQth0DOF5D81Hrqpt1bgmfH18jku3jxaHql7rYEPkTPQyHbfzLLqzTrntzgVb6xDtbb2Olk0lV6WOnqSvrWqbhX3Xl-jMyDLoq5_aR8_j--XoIZ7NJ9PRcBar9sMsptroFQOlgCrGJCU5KYBhzmlBlGa0SGVKclpIrIhhqSYm0dywBBu2SjllSR_dHPfuvHtrdKjFxjW-ak8KQlsbGWTQUYMjpbwLwWsjdt5upT8IDKKTJjpp4ldaG8iPgb0t9eEfWgwfJ_d_2W_VOXHq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2400280806</pqid></control><display><type>article</type><title>Continuous‐Flow Synthesis of ZIF‐8 Biocomposites with Tunable Particle Size</title><source>Access via Wiley Online Library</source><creator>Carraro, Francesco ; Williams, Jason D. ; Linares‐Moreau, Mercedes ; Parise, Chiara ; Liang, Weibin ; Amenitsch, Heinz ; Doonan, Christian ; Kappe, C. Oliver ; Falcaro, Paolo</creator><creatorcontrib>Carraro, Francesco ; Williams, Jason D. ; Linares‐Moreau, Mercedes ; Parise, Chiara ; Liang, Weibin ; Amenitsch, Heinz ; Doonan, Christian ; Kappe, C. Oliver ; Falcaro, Paolo</creatorcontrib><description>Zeolitic imidazolate framework (ZIF) biocomposites show the capacity to protect and deliver biotherapeutics. To date, the progress in this research area is based on laboratory batch methods. Now, the first continuous flow synthetic method is presented for the encapsulation of a model protein (bovine serum albumin, BSA) and a clinical therapeutic (α1‐antitrypsin, AAT) in ZIF‐8. The in situ kinetics of nucleation, growth, and crystallization of BSA@ZIF‐8 were studied by small‐angle X‐ray scattering. By controlling the injection time of ethanol, the particle growth could be quenched by ethanol‐induced crystallization from amorphous particles to ZIF‐8 crystals. The particle size of the biocomposite was tuned in the 40–100 nm range by varying residence time prior to introduction of ethanol. As a proof‐of‐concept, this procedure was used for the encapsulation of AAT in ZIF‐8. Upon release of the biotherapeutic from the composite, the trypsin inhibitor function of AAT was preserved. Genau richtig: Die Partikelgröße von ZIF‐8‐Biokompositen kann durch kontrollierte Injektion von Ethanol in die ZIF‐Vorläuferlösung präzise abgestimmt werden. Basierend auf dem abrupten Übergang von amorpher zu kristalliner Phase wurde eine Ethanol‐Quenchingmethode genutzt, um die Partikelabmessungen auf den Bereich 40–100 nm einzuschränken. Diese Durchflusssynthese ermöglicht die Anwendung von Biotherapeutika in ZIF‐8 für die Biomedizin.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202000678</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>a1-antitrypsin ; Biomedical materials ; Bovine serum albumin ; Chemistry ; Composite materials ; Continuous flow ; Crystallization ; Crystals ; Durchflusschemie ; Encapsulation ; Ethanol ; In-situ-SAXS ; Metal-organic frameworks ; Metall-organische Gerüste ; MOF-Biokomposite ; Nucleation ; Particle size ; Partikelgröße ; Serum albumin ; Trypsin ; Trypsin inhibitors ; Zeolites</subject><ispartof>Angewandte Chemie, 2020-05, Vol.132 (21), p.8200-8204</ispartof><rights>2020 The Authors. Published by Wiley-VCH Verlag GmbH &amp; Co. KGaA.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2028-4efeb60cc04c66a4292d061774d2ce64d5a5294da1c2f65e2f3e7f631f6b57463</citedby><cites>FETCH-LOGICAL-c2028-4efeb60cc04c66a4292d061774d2ce64d5a5294da1c2f65e2f3e7f631f6b57463</cites><orcidid>0000-0001-5935-0409 ; 0000-0001-8485-4676 ; 0000-0002-3032-436X ; 0000-0003-2983-6007 ; 0000-0002-0788-1336 ; 0000-0003-3027-6238 ; 0000-0001-5449-5094 ; 0000-0003-2822-0956</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fange.202000678$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fange.202000678$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Carraro, Francesco</creatorcontrib><creatorcontrib>Williams, Jason D.</creatorcontrib><creatorcontrib>Linares‐Moreau, Mercedes</creatorcontrib><creatorcontrib>Parise, Chiara</creatorcontrib><creatorcontrib>Liang, Weibin</creatorcontrib><creatorcontrib>Amenitsch, Heinz</creatorcontrib><creatorcontrib>Doonan, Christian</creatorcontrib><creatorcontrib>Kappe, C. Oliver</creatorcontrib><creatorcontrib>Falcaro, Paolo</creatorcontrib><title>Continuous‐Flow Synthesis of ZIF‐8 Biocomposites with Tunable Particle Size</title><title>Angewandte Chemie</title><description>Zeolitic imidazolate framework (ZIF) biocomposites show the capacity to protect and deliver biotherapeutics. To date, the progress in this research area is based on laboratory batch methods. Now, the first continuous flow synthetic method is presented for the encapsulation of a model protein (bovine serum albumin, BSA) and a clinical therapeutic (α1‐antitrypsin, AAT) in ZIF‐8. The in situ kinetics of nucleation, growth, and crystallization of BSA@ZIF‐8 were studied by small‐angle X‐ray scattering. By controlling the injection time of ethanol, the particle growth could be quenched by ethanol‐induced crystallization from amorphous particles to ZIF‐8 crystals. The particle size of the biocomposite was tuned in the 40–100 nm range by varying residence time prior to introduction of ethanol. As a proof‐of‐concept, this procedure was used for the encapsulation of AAT in ZIF‐8. Upon release of the biotherapeutic from the composite, the trypsin inhibitor function of AAT was preserved. Genau richtig: Die Partikelgröße von ZIF‐8‐Biokompositen kann durch kontrollierte Injektion von Ethanol in die ZIF‐Vorläuferlösung präzise abgestimmt werden. Basierend auf dem abrupten Übergang von amorpher zu kristalliner Phase wurde eine Ethanol‐Quenchingmethode genutzt, um die Partikelabmessungen auf den Bereich 40–100 nm einzuschränken. Diese Durchflusssynthese ermöglicht die Anwendung von Biotherapeutika in ZIF‐8 für die Biomedizin.</description><subject>a1-antitrypsin</subject><subject>Biomedical materials</subject><subject>Bovine serum albumin</subject><subject>Chemistry</subject><subject>Composite materials</subject><subject>Continuous flow</subject><subject>Crystallization</subject><subject>Crystals</subject><subject>Durchflusschemie</subject><subject>Encapsulation</subject><subject>Ethanol</subject><subject>In-situ-SAXS</subject><subject>Metal-organic frameworks</subject><subject>Metall-organische Gerüste</subject><subject>MOF-Biokomposite</subject><subject>Nucleation</subject><subject>Particle size</subject><subject>Partikelgröße</subject><subject>Serum albumin</subject><subject>Trypsin</subject><subject>Trypsin inhibitors</subject><subject>Zeolites</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkLFOwzAQhi0EEqWwMkdiTjk7jp2MpaKlUkWRWhYWy3Vs6iqNi52oKhOPwDPyJCQqgpHpTqfvvzt9CF1jGGAAciurVz0gQACA8ewE9XBKcJzwlJ-iHgClcUZofo4uQth0DOF5D81Hrqpt1bgmfH18jku3jxaHql7rYEPkTPQyHbfzLLqzTrntzgVb6xDtbb2Olk0lV6WOnqSvrWqbhX3Xl-jMyDLoq5_aR8_j--XoIZ7NJ9PRcBar9sMsptroFQOlgCrGJCU5KYBhzmlBlGa0SGVKclpIrIhhqSYm0dywBBu2SjllSR_dHPfuvHtrdKjFxjW-ak8KQlsbGWTQUYMjpbwLwWsjdt5upT8IDKKTJjpp4ldaG8iPgb0t9eEfWgwfJ_d_2W_VOXHq</recordid><startdate>20200518</startdate><enddate>20200518</enddate><creator>Carraro, Francesco</creator><creator>Williams, Jason D.</creator><creator>Linares‐Moreau, Mercedes</creator><creator>Parise, Chiara</creator><creator>Liang, Weibin</creator><creator>Amenitsch, Heinz</creator><creator>Doonan, Christian</creator><creator>Kappe, C. Oliver</creator><creator>Falcaro, Paolo</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5935-0409</orcidid><orcidid>https://orcid.org/0000-0001-8485-4676</orcidid><orcidid>https://orcid.org/0000-0002-3032-436X</orcidid><orcidid>https://orcid.org/0000-0003-2983-6007</orcidid><orcidid>https://orcid.org/0000-0002-0788-1336</orcidid><orcidid>https://orcid.org/0000-0003-3027-6238</orcidid><orcidid>https://orcid.org/0000-0001-5449-5094</orcidid><orcidid>https://orcid.org/0000-0003-2822-0956</orcidid></search><sort><creationdate>20200518</creationdate><title>Continuous‐Flow Synthesis of ZIF‐8 Biocomposites with Tunable Particle Size</title><author>Carraro, Francesco ; Williams, Jason D. ; Linares‐Moreau, Mercedes ; Parise, Chiara ; Liang, Weibin ; Amenitsch, Heinz ; Doonan, Christian ; Kappe, C. Oliver ; Falcaro, Paolo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2028-4efeb60cc04c66a4292d061774d2ce64d5a5294da1c2f65e2f3e7f631f6b57463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>a1-antitrypsin</topic><topic>Biomedical materials</topic><topic>Bovine serum albumin</topic><topic>Chemistry</topic><topic>Composite materials</topic><topic>Continuous flow</topic><topic>Crystallization</topic><topic>Crystals</topic><topic>Durchflusschemie</topic><topic>Encapsulation</topic><topic>Ethanol</topic><topic>In-situ-SAXS</topic><topic>Metal-organic frameworks</topic><topic>Metall-organische Gerüste</topic><topic>MOF-Biokomposite</topic><topic>Nucleation</topic><topic>Particle size</topic><topic>Partikelgröße</topic><topic>Serum albumin</topic><topic>Trypsin</topic><topic>Trypsin inhibitors</topic><topic>Zeolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carraro, Francesco</creatorcontrib><creatorcontrib>Williams, Jason D.</creatorcontrib><creatorcontrib>Linares‐Moreau, Mercedes</creatorcontrib><creatorcontrib>Parise, Chiara</creatorcontrib><creatorcontrib>Liang, Weibin</creatorcontrib><creatorcontrib>Amenitsch, Heinz</creatorcontrib><creatorcontrib>Doonan, Christian</creatorcontrib><creatorcontrib>Kappe, C. Oliver</creatorcontrib><creatorcontrib>Falcaro, Paolo</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carraro, Francesco</au><au>Williams, Jason D.</au><au>Linares‐Moreau, Mercedes</au><au>Parise, Chiara</au><au>Liang, Weibin</au><au>Amenitsch, Heinz</au><au>Doonan, Christian</au><au>Kappe, C. Oliver</au><au>Falcaro, Paolo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Continuous‐Flow Synthesis of ZIF‐8 Biocomposites with Tunable Particle Size</atitle><jtitle>Angewandte Chemie</jtitle><date>2020-05-18</date><risdate>2020</risdate><volume>132</volume><issue>21</issue><spage>8200</spage><epage>8204</epage><pages>8200-8204</pages><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>Zeolitic imidazolate framework (ZIF) biocomposites show the capacity to protect and deliver biotherapeutics. To date, the progress in this research area is based on laboratory batch methods. Now, the first continuous flow synthetic method is presented for the encapsulation of a model protein (bovine serum albumin, BSA) and a clinical therapeutic (α1‐antitrypsin, AAT) in ZIF‐8. The in situ kinetics of nucleation, growth, and crystallization of BSA@ZIF‐8 were studied by small‐angle X‐ray scattering. By controlling the injection time of ethanol, the particle growth could be quenched by ethanol‐induced crystallization from amorphous particles to ZIF‐8 crystals. The particle size of the biocomposite was tuned in the 40–100 nm range by varying residence time prior to introduction of ethanol. As a proof‐of‐concept, this procedure was used for the encapsulation of AAT in ZIF‐8. Upon release of the biotherapeutic from the composite, the trypsin inhibitor function of AAT was preserved. Genau richtig: Die Partikelgröße von ZIF‐8‐Biokompositen kann durch kontrollierte Injektion von Ethanol in die ZIF‐Vorläuferlösung präzise abgestimmt werden. Basierend auf dem abrupten Übergang von amorpher zu kristalliner Phase wurde eine Ethanol‐Quenchingmethode genutzt, um die Partikelabmessungen auf den Bereich 40–100 nm einzuschränken. Diese Durchflusssynthese ermöglicht die Anwendung von Biotherapeutika in ZIF‐8 für die Biomedizin.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202000678</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-5935-0409</orcidid><orcidid>https://orcid.org/0000-0001-8485-4676</orcidid><orcidid>https://orcid.org/0000-0002-3032-436X</orcidid><orcidid>https://orcid.org/0000-0003-2983-6007</orcidid><orcidid>https://orcid.org/0000-0002-0788-1336</orcidid><orcidid>https://orcid.org/0000-0003-3027-6238</orcidid><orcidid>https://orcid.org/0000-0001-5449-5094</orcidid><orcidid>https://orcid.org/0000-0003-2822-0956</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0044-8249
ispartof Angewandte Chemie, 2020-05, Vol.132 (21), p.8200-8204
issn 0044-8249
1521-3757
language eng
recordid cdi_proquest_journals_2400280806
source Access via Wiley Online Library
subjects a1-antitrypsin
Biomedical materials
Bovine serum albumin
Chemistry
Composite materials
Continuous flow
Crystallization
Crystals
Durchflusschemie
Encapsulation
Ethanol
In-situ-SAXS
Metal-organic frameworks
Metall-organische Gerüste
MOF-Biokomposite
Nucleation
Particle size
Partikelgröße
Serum albumin
Trypsin
Trypsin inhibitors
Zeolites
title Continuous‐Flow Synthesis of ZIF‐8 Biocomposites with Tunable Particle Size
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T10%3A23%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Continuous%E2%80%90Flow%20Synthesis%20of%20ZIF%E2%80%908%20Biocomposites%20with%20Tunable%20Particle%20Size&rft.jtitle=Angewandte%20Chemie&rft.au=Carraro,%20Francesco&rft.date=2020-05-18&rft.volume=132&rft.issue=21&rft.spage=8200&rft.epage=8204&rft.pages=8200-8204&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202000678&rft_dat=%3Cproquest_cross%3E2400280806%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2400280806&rft_id=info:pmid/&rfr_iscdi=true