Monodispersed LiFePO4@C Core-Shell Nanoparticles Anchored on 3D Carbon Cloth for High-Rate Performance Binder-Free Lithium Ion Battery Cathode

Owing to high safety, low cost, nontoxicity, and environment-friendly features, LiFePO4 that is served as the lithium ion battery cathode has attracted much attention. In this paper, a novel 3D LiFePO4@C core-shell configuration anchored on carbon cloth is synthesized by a facile impregnation sol-ge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nanomaterials 2020, Vol.2020 (2020), p.1-11
Hauptverfasser: Zhao, Wei, Chen, Xi, Li, Boqiao, Zhang, Chen, Yang, Zhe, Dang, Fei, Liu, YiLun, Jin, Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue 2020
container_start_page 1
container_title Journal of nanomaterials
container_volume 2020
creator Zhao, Wei
Chen, Xi
Li, Boqiao
Zhang, Chen
Yang, Zhe
Dang, Fei
Liu, YiLun
Jin, Feng
description Owing to high safety, low cost, nontoxicity, and environment-friendly features, LiFePO4 that is served as the lithium ion battery cathode has attracted much attention. In this paper, a novel 3D LiFePO4@C core-shell configuration anchored on carbon cloth is synthesized by a facile impregnation sol-gel approach. Through the binder-free structure, the active materials can be directly combined with the current collector to avoid the falling of active materials and achieve the high-efficiency lithium ion and electron transfer. The traditional slurry-casting technique is applicable for pasting LiFePO4@C powders onto the 2D aluminum foil current collector (LFP-Al). By contrast, LFP-CC exhibits a reversible specific capacity of 140 mAh·g-1 and 93.3 mAh·g-1 at 1C and 10C, respectively. After 500 cycles, no obvious capacity decay can be observed at 10C while keeping the coulombic efficiency above 98%. Because of its excellent capacity, high-rate performance, stable electrochemical performance, and good flexibility, this material has great potentials of developing the next-generation high-rate performance lithium ion battery and preparing the binder-free flexible cathode.
doi_str_mv 10.1155/2020/2607017
format Article
fullrecord <record><control><sourceid>proquest_hinda</sourceid><recordid>TN_cdi_proquest_journals_2400275760</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2400275760</sourcerecordid><originalsourceid>FETCH-LOGICAL-e280t-a29419fc7c495fbf365496b8ebf2abead217b369f59ee3c62314522a5bc7f1c93</originalsourceid><addsrcrecordid>eNpFkMtOwzAQRSMEEqWwY40ssUShfsRxvKMNlCIVWvFYR04yJqnSODiuUH-Cb8ZVK1jN1cyZuaMbBJcE3xLC-Yhiikc0xgITcRQMSJyIMCJUHv9pgk-Ds75fYRxxyekg-Hk2rSnrvgPbQ4nm9RSWi-guRamxEL5V0DToRbWmU9bVRQM9GrdF5WclMi1i9yhVNvcqbYyrkDYWzerPKnxVDtASrG-sVVsAmtRtCTacWgBv4qp6s0ZPfm-inAO79WdcZUo4D060anq4ONRh8DF9eE9n4Xzx-JSO5yHQBLtQURkRqQtRRJLrXLOYRzLOE8g1VTmokhKRs1hqLgFYEVNGIk6p4nkhNCkkGwbX-7udNV8b6F22MhvbesuMRhhTwUWMPXWzpyr_vfqus87Wa2W3GcHZLvBsF3h2CNzTV3saPANa_dMkSZhI2C8aBnxP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2400275760</pqid></control><display><type>article</type><title>Monodispersed LiFePO4@C Core-Shell Nanoparticles Anchored on 3D Carbon Cloth for High-Rate Performance Binder-Free Lithium Ion Battery Cathode</title><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Zhao, Wei ; Chen, Xi ; Li, Boqiao ; Zhang, Chen ; Yang, Zhe ; Dang, Fei ; Liu, YiLun ; Jin, Feng</creator><contributor>Premkumar, Thathan</contributor><creatorcontrib>Zhao, Wei ; Chen, Xi ; Li, Boqiao ; Zhang, Chen ; Yang, Zhe ; Dang, Fei ; Liu, YiLun ; Jin, Feng ; Premkumar, Thathan</creatorcontrib><description>Owing to high safety, low cost, nontoxicity, and environment-friendly features, LiFePO4 that is served as the lithium ion battery cathode has attracted much attention. In this paper, a novel 3D LiFePO4@C core-shell configuration anchored on carbon cloth is synthesized by a facile impregnation sol-gel approach. Through the binder-free structure, the active materials can be directly combined with the current collector to avoid the falling of active materials and achieve the high-efficiency lithium ion and electron transfer. The traditional slurry-casting technique is applicable for pasting LiFePO4@C powders onto the 2D aluminum foil current collector (LFP-Al). By contrast, LFP-CC exhibits a reversible specific capacity of 140 mAh·g-1 and 93.3 mAh·g-1 at 1C and 10C, respectively. After 500 cycles, no obvious capacity decay can be observed at 10C while keeping the coulombic efficiency above 98%. Because of its excellent capacity, high-rate performance, stable electrochemical performance, and good flexibility, this material has great potentials of developing the next-generation high-rate performance lithium ion battery and preparing the binder-free flexible cathode.</description><identifier>ISSN: 1687-4110</identifier><identifier>EISSN: 1687-4129</identifier><identifier>DOI: 10.1155/2020/2607017</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Acids ; Activated carbon ; Aluminum ; Carbon ; Cathodes ; Cloth ; Core-shell particles ; Electrochemical analysis ; Electrodes ; Electron transfer ; Lithium ; Lithium-ion batteries ; Metal foils ; Morphology ; Nanomaterials ; Nanoparticles ; Product safety ; Rechargeable batteries ; Slurries ; Sol-gel processes ; Spectrum analysis</subject><ispartof>Journal of nanomaterials, 2020, Vol.2020 (2020), p.1-11</ispartof><rights>Copyright © 2020 Boqiao Li et al.</rights><rights>Copyright © 2020 Boqiao Li et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6594-9351 ; 0000-0003-3922-3474</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><contributor>Premkumar, Thathan</contributor><creatorcontrib>Zhao, Wei</creatorcontrib><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Li, Boqiao</creatorcontrib><creatorcontrib>Zhang, Chen</creatorcontrib><creatorcontrib>Yang, Zhe</creatorcontrib><creatorcontrib>Dang, Fei</creatorcontrib><creatorcontrib>Liu, YiLun</creatorcontrib><creatorcontrib>Jin, Feng</creatorcontrib><title>Monodispersed LiFePO4@C Core-Shell Nanoparticles Anchored on 3D Carbon Cloth for High-Rate Performance Binder-Free Lithium Ion Battery Cathode</title><title>Journal of nanomaterials</title><description>Owing to high safety, low cost, nontoxicity, and environment-friendly features, LiFePO4 that is served as the lithium ion battery cathode has attracted much attention. In this paper, a novel 3D LiFePO4@C core-shell configuration anchored on carbon cloth is synthesized by a facile impregnation sol-gel approach. Through the binder-free structure, the active materials can be directly combined with the current collector to avoid the falling of active materials and achieve the high-efficiency lithium ion and electron transfer. The traditional slurry-casting technique is applicable for pasting LiFePO4@C powders onto the 2D aluminum foil current collector (LFP-Al). By contrast, LFP-CC exhibits a reversible specific capacity of 140 mAh·g-1 and 93.3 mAh·g-1 at 1C and 10C, respectively. After 500 cycles, no obvious capacity decay can be observed at 10C while keeping the coulombic efficiency above 98%. Because of its excellent capacity, high-rate performance, stable electrochemical performance, and good flexibility, this material has great potentials of developing the next-generation high-rate performance lithium ion battery and preparing the binder-free flexible cathode.</description><subject>Acids</subject><subject>Activated carbon</subject><subject>Aluminum</subject><subject>Carbon</subject><subject>Cathodes</subject><subject>Cloth</subject><subject>Core-shell particles</subject><subject>Electrochemical analysis</subject><subject>Electrodes</subject><subject>Electron transfer</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Metal foils</subject><subject>Morphology</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Product safety</subject><subject>Rechargeable batteries</subject><subject>Slurries</subject><subject>Sol-gel processes</subject><subject>Spectrum analysis</subject><issn>1687-4110</issn><issn>1687-4129</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNpFkMtOwzAQRSMEEqWwY40ssUShfsRxvKMNlCIVWvFYR04yJqnSODiuUH-Cb8ZVK1jN1cyZuaMbBJcE3xLC-Yhiikc0xgITcRQMSJyIMCJUHv9pgk-Ds75fYRxxyekg-Hk2rSnrvgPbQ4nm9RSWi-guRamxEL5V0DToRbWmU9bVRQM9GrdF5WclMi1i9yhVNvcqbYyrkDYWzerPKnxVDtASrG-sVVsAmtRtCTacWgBv4qp6s0ZPfm-inAO79WdcZUo4D060anq4ONRh8DF9eE9n4Xzx-JSO5yHQBLtQURkRqQtRRJLrXLOYRzLOE8g1VTmokhKRs1hqLgFYEVNGIk6p4nkhNCkkGwbX-7udNV8b6F22MhvbesuMRhhTwUWMPXWzpyr_vfqus87Wa2W3GcHZLvBsF3h2CNzTV3saPANa_dMkSZhI2C8aBnxP</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Zhao, Wei</creator><creator>Chen, Xi</creator><creator>Li, Boqiao</creator><creator>Zhang, Chen</creator><creator>Yang, Zhe</creator><creator>Dang, Fei</creator><creator>Liu, YiLun</creator><creator>Jin, Feng</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-6594-9351</orcidid><orcidid>https://orcid.org/0000-0003-3922-3474</orcidid></search><sort><creationdate>2020</creationdate><title>Monodispersed LiFePO4@C Core-Shell Nanoparticles Anchored on 3D Carbon Cloth for High-Rate Performance Binder-Free Lithium Ion Battery Cathode</title><author>Zhao, Wei ; Chen, Xi ; Li, Boqiao ; Zhang, Chen ; Yang, Zhe ; Dang, Fei ; Liu, YiLun ; Jin, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e280t-a29419fc7c495fbf365496b8ebf2abead217b369f59ee3c62314522a5bc7f1c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acids</topic><topic>Activated carbon</topic><topic>Aluminum</topic><topic>Carbon</topic><topic>Cathodes</topic><topic>Cloth</topic><topic>Core-shell particles</topic><topic>Electrochemical analysis</topic><topic>Electrodes</topic><topic>Electron transfer</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Metal foils</topic><topic>Morphology</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Product safety</topic><topic>Rechargeable batteries</topic><topic>Slurries</topic><topic>Sol-gel processes</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Wei</creatorcontrib><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Li, Boqiao</creatorcontrib><creatorcontrib>Zhang, Chen</creatorcontrib><creatorcontrib>Yang, Zhe</creatorcontrib><creatorcontrib>Dang, Fei</creatorcontrib><creatorcontrib>Liu, YiLun</creatorcontrib><creatorcontrib>Jin, Feng</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of nanomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Wei</au><au>Chen, Xi</au><au>Li, Boqiao</au><au>Zhang, Chen</au><au>Yang, Zhe</au><au>Dang, Fei</au><au>Liu, YiLun</au><au>Jin, Feng</au><au>Premkumar, Thathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monodispersed LiFePO4@C Core-Shell Nanoparticles Anchored on 3D Carbon Cloth for High-Rate Performance Binder-Free Lithium Ion Battery Cathode</atitle><jtitle>Journal of nanomaterials</jtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1687-4110</issn><eissn>1687-4129</eissn><abstract>Owing to high safety, low cost, nontoxicity, and environment-friendly features, LiFePO4 that is served as the lithium ion battery cathode has attracted much attention. In this paper, a novel 3D LiFePO4@C core-shell configuration anchored on carbon cloth is synthesized by a facile impregnation sol-gel approach. Through the binder-free structure, the active materials can be directly combined with the current collector to avoid the falling of active materials and achieve the high-efficiency lithium ion and electron transfer. The traditional slurry-casting technique is applicable for pasting LiFePO4@C powders onto the 2D aluminum foil current collector (LFP-Al). By contrast, LFP-CC exhibits a reversible specific capacity of 140 mAh·g-1 and 93.3 mAh·g-1 at 1C and 10C, respectively. After 500 cycles, no obvious capacity decay can be observed at 10C while keeping the coulombic efficiency above 98%. Because of its excellent capacity, high-rate performance, stable electrochemical performance, and good flexibility, this material has great potentials of developing the next-generation high-rate performance lithium ion battery and preparing the binder-free flexible cathode.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/2607017</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6594-9351</orcidid><orcidid>https://orcid.org/0000-0003-3922-3474</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-4110
ispartof Journal of nanomaterials, 2020, Vol.2020 (2020), p.1-11
issn 1687-4110
1687-4129
language eng
recordid cdi_proquest_journals_2400275760
source Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Acids
Activated carbon
Aluminum
Carbon
Cathodes
Cloth
Core-shell particles
Electrochemical analysis
Electrodes
Electron transfer
Lithium
Lithium-ion batteries
Metal foils
Morphology
Nanomaterials
Nanoparticles
Product safety
Rechargeable batteries
Slurries
Sol-gel processes
Spectrum analysis
title Monodispersed LiFePO4@C Core-Shell Nanoparticles Anchored on 3D Carbon Cloth for High-Rate Performance Binder-Free Lithium Ion Battery Cathode
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T11%3A18%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hinda&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monodispersed%20LiFePO4@C%20Core-Shell%20Nanoparticles%20Anchored%20on%203D%20Carbon%20Cloth%20for%20High-Rate%20Performance%20Binder-Free%20Lithium%20Ion%20Battery%20Cathode&rft.jtitle=Journal%20of%20nanomaterials&rft.au=Zhao,%20Wei&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1687-4110&rft.eissn=1687-4129&rft_id=info:doi/10.1155/2020/2607017&rft_dat=%3Cproquest_hinda%3E2400275760%3C/proquest_hinda%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2400275760&rft_id=info:pmid/&rfr_iscdi=true